Денис Соломатин - Математические модели в естественнонаучном образовании. Том I

Здесь есть возможность читать онлайн «Денис Соломатин - Математические модели в естественнонаучном образовании. Том I» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2022, Жанр: Биология, Медицина, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические модели в естественнонаучном образовании. Том I: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические модели в естественнонаучном образовании. Том I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Начало XXI века ознаменовано выходом в свет прекрасной книги Mathematical Models in Biology An Introduction / Elizabeth S. Allman, University of Southern Maine, John A. Rhodes, Bates College, Maine, содержащей обзор достижений века предшествующего, которая легла в основу данного издания, поэтому если уже знакомы с ней, то мне вас практически нечем удивить. В противном случае – добро пожаловать в чудесный мир тесного переплетения идей биологии, криптографии, абстрактной общей алгебры, конкретной дискретной математики и вероятностной математической статистики, на пользу бурно развивающейся ныне биоматематики. Хотите узнать в чём практический смысл вычисления собственных значений и собственных векторов матриц? Как определяется доля населения, которая должна быть успешно вакцинирована для обеспечения коллективного иммунитета? Как из структуры ДНК можно почерпнуть принципы СУВ? И много-многое другое? Тогда эта книга именно для вас.

Математические модели в естественнонаучном образовании. Том I — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические модели в естественнонаучном образовании. Том I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вопросы для самопроверки:

– Будет ли общая численность математиков расти, а не уменьшаться при таких условиях?

– Предположим, вы не знаете эффективной «плодовитости», но знаете, что численность Математические модели в естественнонаучном образовании Том I - изображение 52 стабильна (неизменна) с течением времени. Какой должна быть Математические модели в естественнонаучном образовании Том I - изображение 53? (Подсказка: поймите, что такое Математические модели в естественнонаучном образовании Том I - изображение 54, если численность стабильна?) Если каждый год выпускается 200 молодых специалистов, какая их часть должна оставаться в системе и обучать математиков следующего поколения?

Обратите внимание, что в этой последней модели мы игнорировали тех математиков, кто не участвует в обучении математиков следующего поколения. Это на самом деле довольно распространенный подход и упрощает модель. Однако это означает, что делаются дополнительные предположения. Для конкретного направления точное количество учителей может мало влиять на то, как растет численность специалистов. Возможно, учителя всегда встречаются примерно в равном количестве с узкими специалистами, так что мы знаем, что общая численность людей, посвятивших жизнь математике, просто вдвое превышает число учителей математики. С другой стороны, численность профессиональных математиков может вести себя иначе, чем численность учителей математики, но независимо от того, мало ли учителей или их много, всегда достаточно, чтобы появление учителей происходило непрестанно. Таким образом, именно численность учителей математики является важным параметром для отслеживания, чтобы понять долгосрочный рост или сокращение числа профессиональных математиков в стране.

Вопросы для самопроверки:

– Можете ли вы представить себе обстоятельства, при которых игнорирование уменьшения числа профессионалов той или оной области было бы хорошей идеей?

Так что же такое разностное уравнение? Теперь, когда увидели разностное уравнение на примере, можно попытаться дать строгое определение: разностное уравнение – это формула, выражающая значения некоторой величины Математические модели в естественнонаучном образовании Том I - изображение 55 в терминах предыдущих значений Математические модели в естественнонаучном образовании Том I - изображение 56. Таким образом, если Математические модели в естественнонаучном образовании Том I - изображение 57 является какой-либо функцией, то Математические модели в естественнонаучном образовании Том I - изображение 58 называется разностным уравнением. В предыдущем примере использовалась Математические модели в естественнонаучном образовании Том I - изображение 59, но часто картинка 60 будет более сложным.

Изучая разностные уравнения и их приложения, рассмотрим два основных вопроса: 1) Как найти подходящее разностное уравнение для моделирования ситуации? 2) Как понять поведение модели разностных уравнений после того, как её нашли?

Обе эти задачи бывают довольно трудны. Тем не менее, обязательно научитесь моделировать с помощью разностных уравнений, глядя на математические модели, используемые разными авторами в классической литературе, а затем создадите собственные модели. Однако, честно говоря, это не обязательно исключит столкновение с принципиально неразрешимой проблемой. Что касается понимания поведения, которое моделируется разностным уравнением, то обычно не представляется возможным найти явную формулу, как было сделано выше для картинка 61, описывающего численность популяции в мальтузианской модели. Вместо этого разрабатываются методы извлечения менее точной, но качественной, а не количественной информации из модели.

Конкретное разностное уравнение, обсуждаемое в этом разделе, иногда называют экспоненциальной или геометрической моделью, поскольку модель приводит к экспоненциальному росту и ассоциируется с именем Томаса Мальтуса. Математики, однако, склонны сосредотачиваться на форме уравнения картинка 62 и говорить, что модель линейна. Такая терминология может сбивать с толку, но она важна, когда линейная модель описывает экспоненциальный рост или убывание.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические модели в естественнонаучном образовании. Том I»

Представляем Вашему вниманию похожие книги на «Математические модели в естественнонаучном образовании. Том I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические модели в естественнонаучном образовании. Том I»

Обсуждение, отзывы о книге «Математические модели в естественнонаучном образовании. Том I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x