Таким образом, основная структура хроматина представляет собой цепь линейно расположенных нуклеосом диаметром 10 нм, которую называют нуклеосомной фибриллой. Это низший уровень организации хроматина. Структуру более высокого порядка образуют нуклеосомы, свернутые в спираль, которая имеет диаметр 20–30 нм и шаг 10 им. Свертывание нуклеосом в спираль, по-видимому, обеспечивается богатым лизином гистоном Н1, который, как было показано, соединяется с линкерной ДНК между соседними нуклеосомами. Этот вывод следует из того, что после расщепления мононуклеосом стафилококковой нуклеазой размер ДНК уменьшается с 200 до 140 пар оснований, причем одновременно освобождается 35-парный фрагмент ДНК, связанный с гистоном Н1 [20]. Когда гистон Н1 добавляли к хроматину, который был его лишен, увеличение сродства к нему наблюдалось только до стадии образования октануклеосомы, но не далее [301]. Связывание с гистоном Н1 не только стабилизирует ДНК в линкерной области, но вызывает также ее дальнейшую конденсацию и свертывание [75]. Более высокий порядок структуры хроматина (по сравнению с цепочкой бусин) представляет собой спираль из частиц октануклеосом, образование которой обеспечивается гистоном Н1 или гистоном Н5 (в случае эритроцитов, содержащих ядра). Это согласуется с результатами, согласно которым полинуклеосомы, содержащие около шести нуклеосом, являются, по-видимому, основными матрично активными единицами хроматина, связывающимися с эндогенной РНК-полимеразой [344]. Олигонуклеосомы служат лучшими матрицами для транскрипции, чем мононуклеосомы, и на них синтезируются более длинные транскрипты [318].
Нуклеосома — динамическая единица как в структурном, так и в функциональном отношении. Как сказано выше, она состоит из двух половин, что может быть определено путем специфического связывания восьми молекул гистонов с ДНК. То, что нуклеосомы в транскрипционно активном состоянии подвержены конформационным изменениям, становится очевидным при изучении их чувствительности к ДНКазе I. Этот фермент преимущественно воздействует на те последовательности ДНК, которые активно транскрибируются. Он удаляет ДНК, кодирующую глобин, из ядер эритроцитов цыпленка, но не действует на ядра клеток мозга или фибробластов [125, 282, 367]. На ДНК яичного альбумина эритроцитов и фибробластов, в которой этот ген не транскрибируется, фермент также не действует. Стафилококковая нуклеаза, которая, как известно, расщепляет ДНК в межнуклеосомной области, не расщепляет ДНК глобина из эритроцитов цыпленка. Если мономерные нуклеосомы, полученные из этих клеток действием стафилококковой ДНКазы, обработать затем ДНКазой I, то преимущественно удаляются гены глобина. Показано [125], что ген яичного альбумина предпочтительно расщепляется ДНКазой в клетках яйцевода курицы и не расщепляется в других клетках, в которых он не транскрибируется. В клетках хомяка, трансформированных аденовирусом, последовательности ДНК аденовируса, которые легко расщепляются ДНКазой I, представляют собой участки, с которых транскрибируется мРНК. Другие вирусные последовательности резистентны к этой нуклеазе [119]. Из приведенных наблюдений следует, что во время транскрипции происходят конформационные изменения в хроматине, так что ДНК становится более чувствительной к ДНКазе I, но ее чувствительность к стафилококковой нуклеазе остается прежней. Полученные результаты подтверждаются данными электронной микроскопии [313]. Показано, что в процессе развития ооцитов трех видов Xenopus транскрипционно активный ядрышковый хроматин выглядит гладким, нуклеосомы в нем присутствуют в небольшом количестве или вообще отсутствуют. Неактивный хроматин имеет вид бусин. Пониженная транскрипционная активность хроматина коррелирует с появлением бусин в его структуре, тогда как транскрипционно активный хроматин содержит больше мононуклеосом, чем транскрипционно неактивный, что и означает увеличение той области хроматина, которая активна при транскрипции [223]. Электронно-микроскопическое изучение активно транскрибируемых рибосомных генов Physarum polycephalum показывает, что ДНК в транскрибируемом участке имеет вытянутую конформацию [179]. Таким образом, структура хроматина и, в особенности, нуклеосом подвержена конформационным изменениям в процессе транскрипции, а возможно, и репликации. Не исключено, что это вызвано связыванием с НГБ. Для ковалентной модификации гистонов различных типов, па-пример фосфорилирования, ацетилирования, метилирования и ADPрибозилирования, необходимы эффекторы.
Читать дальше