При работах с радиоактивными изотопами и излучениями иногда важно знать, какую дозу излучения получил тот или иной работник. Для этой цели применяют специальный индивидуальный дозиметр, который имеет вид авторучки и помещается в боковом кармане халата. После окончания рабочего дня проверяют его показания и узнают, какая доза излучения получена человеком, работающим с излучениями.
Для измерения радиоактивности земной поверхности и поисков месторождений радиоактивных минералов пользуются приборами, установленными на автомашинах и на самолетах. Приборы автоматически отмечают радиоактивность грунтов и горных пород, над которыми проезжает или пролетает такая лаборатория. Кроме указанных выше приборов для выявления и изучения распределения радиоактивных веществ в различных объектах широко используется методика авторадиографии. Сущность этой методики заключается в том, что исследуемый объект, содержащий радиоактивные включения, на некоторое время прижимают к светочувствительному слою фотопластинки или фотопленки. Поскольку радиоактивные излучения действуют на фотоматериалы подобно свету, на фотопластинке после проявления образуется изображение, показывающее характер распределения радиоактивных веществ в исследуемом образце (минерале, листке растения).
Первое применение авторадиографии в биологии относится к 1904 г., когда отечественный ученый С. Лондон получил авторадиограмму лягушки, которую перед этим заставлял вдыхать радон.
Ценное преимущество авторадиографии в том, что она позволяет не только выявить в том или ином объекте радиоактивные вещества, но и установить точное их местоположение. Другое преимущество этого метода - высокая чувствительность, обусловленная способностью фотографических эмульсий суммировать действие слабых излучений. Применяя длительные (до нескольких месяцев) экспозиции, этим методом можно выявить крайне незначительное количество радиоактивных веществ. Методом авторадиографии часто пользуются биологи при изучении распределения радиоактивных веществ в тканях животного организма или растения.
От рентгеновской трубки до синхрофазотрона
Еще долгое время после открытия рентгеновских лучей и явления радиоактивности рентгеновская трубка и естественно радиоактивные вещества, встречающиеся в природе в относительно небольших количествах, были единственными источниками ионизирующих излучений. Получение радиоактивных элементов сопровождалось значительными трудностями и большими затратами.
Для получения одного грамма радия требовалось добыть и переработать 3 т урановой соли. Не удивительно поэтому, что радий стоил чрезвычайно дорого и приобретать даже небольшие количества его могли только наиболее богатые учреждения. Общее количество добытого во всем мире радия не превышало 1 кг.
Поэтому с радиоактивными элементами и излучениями сталкивалось очень небольшое количество лиц. Защита от излучений, с которыми приходилось иметь дело, не представляла особых трудностей - количества радиоактивных элементов были невелики, а энергия рентгеновских лучей не превышала 200 - 300 кэв.
Это продолжалось до середины 30-х годов, пока не научились получать радиоактивные изотопы искусственным путем и не началось строительство мощных ускорительных установок, дающих излучения высоких энергий.
В настоящее время большинство радиоактивных изотопов получают искусственным путем. Это не только обходится во много раз дешевле, но и позволяет значительно расширить круг применяемых изотопов - ведь в природе встречается только небольшое количество радиоактивных элементов.
Искусственное получение радиоактивных элементов стало возможным после того, как люди научились проводить такие реакции, в которых принимают участие ядра атомов.
При обычных химических реакциях взаимодействуют только электроны, находящиеся на внешних оболочках атомов. Эти взаимодействия не касаются ядер атомов. Поэтому химическим путем невозможно решить ту задачу, которую в течение ряда столетий пытались решить алхимики древности и средневековья - превратить один элемент в другой.
Особенность радиоактивного распада в том, что, как уже говорилось выше, никакие внешние причины не могут заметно повлиять на его скорость. Причина этого заключается в очень большой величине ядерных сил. Чтобы освободить ядерную частицу из ядра, нужно затратить энергию в миллионы электрон-вольт, В то же время энергия, освобождаемая в результате, например, химических реакций, не превышает 3 - 4 эв. Поэтому то количество энергии, которое принимает участие в обычных химических и физических процессах, может воздействовать на электронную оболочку, но его недостаточно, чтобы повлиять на ядро атома.
Читать дальше