За время нашей работы с мозгом морских львов и дельфинов Питер достаточно поднаторел в заливке образцов желатином и запуске сканирования на всю ночь. На обработку мозга пятнистого продельфина ушло несколько дней. Сигнал получился не таким четким, как у белобочки, то есть диффузионные показатели сильнее искажались тепловым движением. И тем не менее, когда мы поместили виртуальные метки в нижнее двухолмие, симулятор выдал точно такой же путь к таламусу и височным долям, как у белобочки. Если рассматривать левую и правую стороны мозга по отдельности, то височный слуховой путь обнаруживался в четырех полушариях из четырех. Наше открытие подтверждалось.
Результаты ДТВ дали нам дорожную карту воспринимающей стороны слуха дельфинов. В обоих просканированных образцах мозга основной путь от таламуса шел к височным долям, а не к теменной части. В целом этот тракт достаточно типичен для мозга млекопитающих, и, соответственно, там, где он заканчивается, располагается слуховая кора.
Но куда поступает информация оттуда?
Чтобы это выяснить, мы попросту поместили очередную виртуальную метку в обнаруженную нами область слуховой коры и принялись отслеживать идущие оттуда тракты. Теперь они вели назад и вверх.
Получившаяся карта указывала на две слуховые области – одна в височных долях, как у сухопутных млекопитающих, а другая ближе к темени, рядом со зрительной корой. Среди млекопитающих схожая организация наблюдается только у летучих мышей. Поскольку летучие мыши пользуются эхолокацией на суше, механизм ее вполне понятен. У летучих мышей имеется первичная слуховая зона в височных долях, точно такая же, как у дельфинов, но кроме нее есть еще вторичная и третичная слуховая кора непосредственно над височными долями и позади. У некоторых видов летучих мышей содержащиеся в этих вспомогательных слуховых областях нейроны специфически активируются на разные интервалы возвращения эха, формируя в итоге когнитивную карту расстояний до окружающих объектов [69] M. Kossl, J. C. Hechavarria, C. Voss, S. Macias, E. C. Mora, and M. Vater, “Neural Maps for Target Range in the Auditory Cortex of Echolating Bats,” Current Opinion in Neurobiology 24 (2014): 68–75.
. У некоторых летучих мышей присутствует еще одна прилегающая область, которая реагирует на изменение звука эха. Эти мыши умеют регулировать издаваемый ими звук, подстраиваясь под объект эхолокации. Это называется «частотная модуляция», как в радиовещании в диапазоне УКВ (FM).
Самое примечательное, что при всем сходстве между мозгом летучих мышей и дельфинов эти животные не связаны близким родством. Чтобы отыскать у них общего предка, придется вернуться в прошлое минимум на восемьдесят миллионов лет [70] J. Parker, G. Tsagkogeorga, J. A. Cotton, Y. Liu, P. Provero, E. Stupka, and S. J. Rossiter, “Genome-Wide Signatures of Convergent Evolution in Echolocating Mammals,” Nature 502 (2013): 228–231.
. Ближайшие сухопутные родственники дельфинов – парнокопытные, то есть свиньи, коровы, козы, овцы, и у них эхолокации не обнаруживается (хотя другие представители копытных, гиппопотамы, общаются при помощи издаваемых под водой щелчков). В данном случае перед нами классический пример параллельной эволюции. Эхолокация развивалась у летучих мышей и дельфинов независимо, но, поскольку задача стояла одинаковая, решения тоже получились аналогичными, только одно – для воздушной среды, а другое – для водной. Эту картину подтверждает и исследование генома дельфинов и летучих мышей. Гены, связанные со слухом и зрением, роднят этих животных между собой гораздо больше, чем следовало бы ожидать при таком далеком общем предке.
Сознавать, что мы отыскали еще один кусочек мозаики, еще одно звено цепи, соединяющей дельфинов с сухопутными животными, было приятно. Отчасти нас воодушевляла просто радость познания. Древо земной жизни поражает великолепием, и, когда удается обнаружить очередную связь между его ветвями, становится яснее, где на нем располагаюсь лично я, представитель семейства гоминид. Результаты исследования мозга животных при помощи таких сложных инструментов, как диффузионная МРТ, говорят, что сходства между нами больше, чем различий. Даже такое чуждое, казалось бы, явление, как эхолокация, на самом деле не так уж и необычно, если разобрать его на составляющие. Нагель выступал против редукционизма, но ведь именно с помощью редукции к проводящим путям в белом веществе нам удалось обнаружить нечто общее между дельфинами и человеком.
А еще радостно было от того, что наша работа имела и философское значение. Философы любят рассуждать о «квалиа» – субъективном ощущении какого-то понятия, например красного цвета. Представьте себе орхидею, переливающуюся всеми оттенками от розового до фиолетового. Ни в одном языке не хватит слов, чтобы передать ощущения от этого цветка целиком и полностью. Даже названий оттенков не хватит, а уж о запахе и говорить нечего. Так что если квалиа существует, каждый из нас навеки заперт в мире собственных ощущений, не имея ни малейшей возможности проверить, ощущает ли он то же самое, что и остальные. Если в нашем распоряжении только слова, как убедиться, что мой «красный» не выглядит для вас «синим»?
Читать дальше
Конец ознакомительного отрывка
Купить книгу