У дельфинов имеются уши, но слуховое отверстие у них шириной с булавочный прокол. Слышат они челюстью – звук передается через кости. В этом на самом деле нет ничего странного. У человека такой механизм слуха тоже есть. Если приложить что-нибудь вибрирующее, телефон например, к челюстной дуге, вы разберете звук. Форма головы дельфина не только обеспечивает ему стремительность, но и фокусирует встречные звуковые волны на широкой части челюсти. Такое устройство наделяет дельфинов максимальной восприимчивостью к звуку, поступающему спереди.
Исследования эхолокации у дельфинов неоднократно демонстрировали невероятные способности этих животных к распознаванию. В одном из экспериментов они различали толщину алюминиевых сфер, даже когда разница составляла не более 0,3 мм [66] W. W. L. Au, “Echolocation,” in Encyclopedia of Marine Mammals, edited by W. F. Perrin, B. Wursig, and J. G. M. Thewissen, 348–357 (Burlington, MA: Academic Press, 2009).
. Подобную чувствительность обеспечивает не только использование ультразвука, но и молниеносная работа мозга. Скорость обработки слуховых сигналов можно проверить, например, с помощью двух щелчков, постепенно сокращая разрыв между ними до тех пор, пока они не сольются в восприятии в один. Величина разрыва при слиянии и выступает показателем времени, которое требуется нервной системе, чтобы обработать входящую информацию. У человека оно составляет от 30 до 50 миллисекунд. У дельфинов – 264 микро секунды, то есть дельфин обрабатывает звук в сто с лишним раз быстрее, чем человек.
Хотя пока еще не до конца понятно, как именно дельфинам удается различать звуки с таким микроскопическим временным интервалом, можно предположить, что до того, как сигнал доберется до коры или даже до таламуса, он проходит тщательную обработку в стволе мозга. Возьмем оркестр, который традиционно настраивается по ноте ля первой октавы. Эта нота обозначается как А440, поскольку ее частота – 440 Гц. Но даже музыканту с абсолютным слухом сложно будет определить без сопоставления с камертонным эталоном, не сползает ли его инструмент на 439 Гц. При совместной игре разница частот составляет 1 Гц и называется частотой биений, потому что мы слышим при этом легкое биение, в данном случае раз в секунду. Исходя из времени обработки звука у дельфинов, можно вычислить, что они различают частоту биения до 4 кГц.
Как видим, все эти компоненты слуховой системы, которые поначалу кажутся такими непривычными, вполне соотносятся с компонентами нашего собственного мозга. А значит, вопреки тому, что утверждал Нагель, не так уж и трудно представить себе, каково быть летучей мышью или дельфином.
По сути, эхолокация не только не делает дельфинов непостижимыми, а, наоборот, предоставляет нам идеальную возможность определить, что можно узнать о субъективных ощущениях животного по его мозгу. Еще в середине XX века анатомы установили, что проводящие слуховые пути в мозге дельфина достаточно обширны. Однако до сих пор было мало изучено, как дельфины при помощи отраженного звука создают когнитивную картину окружающего их мира, если, конечно, здесь уместно слово «картина».
Нам нужно было узнать, какая область коры головного мозга принимает звуковые данные. У сухопутных млекопитающих слуховой нерв передает всю акустическую информацию в ствол мозга. Там звуковой поток расщепляется надвое, одна часть остается на той же стороне, откуда поступила, другая направляется на противоположную сторону ствола. Затем, проходя через цепочку ядер, эти потоки движутся вверх к таламусу.
Непосредственно перед тем, как достичь таламуса, звуковые импульсы направляются в сферическое ядро под названием «нижнее двухолмие». У млекопитающих оно настолько крупное, что правая и левая его части образуют пару внушительных выпуклостей на тыльной части ствола. Прямо над ним находится верхнее двухолмие, принимающее зрительную информацию, и по соотношению размеров нижнего и верхнего двухолмия можно примерно представить себе относительную роль слухового и зрительного восприятия у данного животного. У дельфинов нижнее двухолмие очень крупное, и оттуда уже совсем близко до таламуса.
Таламус располагается в центре мозга, между стволом и корой. У человека он величиной примерно с небольшую сливу. Таламус четко отделен от коры, а внутренняя структура представляет собой десятки отдельных ядер. Эти ядра служат промежуточными станциями при передаче сигналов между корой и другими отделами нервной системы. Часть ядер получает сигналы от спинного мозга, передающего сенсорные импульсы от органов тела к мозгу. Другие обеспечивают кольцевое взаимодействие импульсов, принимая информацию от базальных ядер и мозжечка и ретранслируя в кору, – так, судя по всему, мозгу проще координировать передачу. У приматов внушительная задняя часть таламуса, называющаяся подушкой, отвечает за зрение. Слуховая информация поступает в медиальное коленчатое тело.
Читать дальше
Конец ознакомительного отрывка
Купить книгу