Однако у трех из шести испытуемых ученые заметили изменения в человеческом штамме. У бактерий из поколения в поколение передавался новый ген, которого не было в начале эксперимента. Они унаследовали от куриного штамма ген устойчивости к ванкомицину.
Микроорганизмы могут горизонтально принимать гены даже от своих злейших врагов – вирусов. Вирусы – это гены, окруженные белковой оболочкой, и у них особая форма наследственности, не такая как у клеток. Вирус не воспроизводится сам, копируя свои гены, и не делится на два. Вместо этого он внедряется в клетку-хозяина. Например, бактериофаги – вирусы, атакующие бактерий, обычно прикрепляются к клеточной стенке хозяина и впрыскивают внутрь нить ДНК, как будто выдавливают из шприца спагетти. У бактерий есть несколько способов распознать и уничтожить вирусную ДНК. Но ни один из них не идеален. Если вирусные гены выживают в клетке, они начинают ею командовать. Бактерия делает белки по инструкции, записанной в вирусных генах. Эти белки заставляют клетку создавать новые вирусы, комплектуя их новыми копиями вирусных генов.
Когда речь заходит о вирусах, наследственность становится почти абстракцией. У них нет никаких материальных основ, связующих их с предками, поскольку каждый атом, входящий в новую вирусную частицу, происходит из хозяйской клетки, которая изготавливает вирусы. Для них наследственность – это невидимая ниточка информации, связывающая вирус с его потомками.
Когда гены упаковываются в новые вирусы, иной раз происходит сбой. Внутрь вирусной оболочки может попасть ген от бактерии-хозяина. Такой новый вирус, покидая бактерию, будет нести ее ген вместе со своими, и впоследствии он способен проникнуть в нового хозяина. Иногда эти бактериальные гены встраиваются в хромосому этого нового хозяина. Таким образом вирусы могут выступать в роли стихийных транспортных средств, перенося гены бактерий от одной клетки к другой, а случается даже, что и между разными видами.
__________
Когда ученые стали исследовать микроорганизмы подробнее, то обнаружили еще более странную форму наследственности. Одна из наиболее необычных разновидностей бактериальной наследственности была открыта в начале 2000-х гг. в процессе изучения защиты микроорганизмов от вирусов.
Оказывается, многие виды бактерий могут научиться распознавать новый вирус, а в дальнейшем быстро и прицельно его уничтожать. У позвоночных животных, таких как мы с вами, есть похожая способность. Когда нас атакуют вирусы гриппа или ОРВИ, наша иммунная система создает антитела, которые уничтожают эти вирусы при повторном заражении. Бактерии не могут использовать иммунную систему, состоящую из миллиардов клеток: они состоят из единственной клетки, которая должна сама заботиться о себе. И они справляются с этой задачей, используя молекулярную систему CRISPR-Cas [347] Zimmer 2015a.
.
Когда вирус атакует бактерию, он обычно прикрепляется к своей жертве и вводит внутрь нить ДНК. Многие микроорганизмы могут отрезать кусочек этой чужеродной ДНК и вставлять его в определенное место собственной ДНК, которое называется CRISPR ( clustered regularly interspaced short palindromic repeats – короткие палиндромные кластерные повторы).
Если бактерия выживает после первой атаки этого вируса, то теперь у нее есть защита от следующей. Она готовится к ней, синтезируя короткие молекулы РНК, которые соответствуют кусочку вирусной ДНК, полученной во время первой атаки. Белок под названием Cas окружает эти молекулы РНК, и они вместе плавают в клетке.
Если тот же вид вируса попытается ввести свою ДНК в клетку, система CRISPR-Cas будет прикрепляться ко всем поступающим ДНК. Белок Cas разъединяет нити вирусной ДНК и разрезает их на кусочки. Нашинкованный на безобидные фрагменты вирус уже не может причинить вред бактерии.
В ходе сражения с разными вирусами микроорганизм может накопить образцы ДНК от многих врагов. И когда он делится, то передает накопленное потомкам. Когда бактерия копирует свою хромосому, она копирует участок CRISPR вместе со всей остальной ДНК. Барьер Августа Вейсмана [348] Далее будут также использоваться равнозначные термины «вейсмановский барьер» и «барьер Вейсмана». – Прим. науч. ред.
может предотвратить влияние жизненного опыта животного на его половые клетки. Но для бактерий такого барьера не существует. В каком-то смысле соматическая и зародышевая часть у них слиты в единую клетку.
Некоторые исследователи считают, что система CRISPR – это самый что ни на есть пример наследования по Ламарку [349] Koonin and Wolf 2009.
. Конечно, бактерии, воюющие с вирусами, сильно отличаются от тянущихся к листьям жирафов, которых представлял себе Ламарк, и поэтому такое сравнение может свестись к дискуссии о терминах. Но совершенно точно можно утверждать, что с обнаружением системы CRISPR ученые открыли еще один путь наследственности в обход закона Менделя.
Читать дальше
Конец ознакомительного отрывка
Купить книгу