Когда в лаборатории стало нарастать разочарование, аспирант Кадзутоси Такахаси предложил прекратить тестировать белки по одному, а вместо этого наполнить клетку сразу смесью из обеих дюжин. Возможно, такая комбинация белков могла бы хоть чуть-чуть повлиять на клетку. Даже крошечного изменения было бы достаточно, чтобы убедиться, – их работа была не напрасной.
Яманака благословил этот эксперимент, хотя и был уверен, что Такахаси ошибается. Аспирант внедрил все 24 белка в клетки кожи и стал ждать, что из этого выйдет. Спустя четыре недели Такахаси пришел к Яманаке с новостями. Эти взрослые клетки кожи превратились в нечто похожее на полноценные эмбриональные клетки.
«Я подумал, что это, должно быть, какая-то ошибка», – рассказывал Яманака. Он просил Такахаси повторить эксперимент несколько раз. Снова и снова клетки становились эмбриональными.
Достаточно впечатляло уже и то, что эти клетки выглядели как эмбриональные и синтезировали основные эмбриональные белки. Но Яманаку интересовало, ведут ли они себя так же, как эмбриональные. Его группа встроила несколько перепрограммированных клеток в мышиные эмбрионы на ранней стадии развития. Из этих эмбрионов получились здоровые мышата, и ученые обнаружили, что перепрограммированные клетки дали начало нормальным взрослым клеткам в разных частях тела.
Успех натолкнул Яманаку на мысль, что необязательно заполнять клетки всеми 24 белками. Он начал новый эксперимент, подбирая смесь, в которую входили только некоторые из них. Его сотрудники обнаружили, что достаточно всего четырех белков. Совместно с Джеймсом Томсоном из Висконсинского университета в Мадисоне Яманака показал, что после такого простого воздействия человеческая клетка становится эмбриональной.
В лабораторных отчетах исследователь называл полученные перепрограммированные клетки индуцированными плюрипотентными стволовыми клетками. К тестированию этих клеток приступили и другие исследователи – в надежде, что они окажутся более подходящими для лечения заболеваний, чем эмбриональные. Очень легко себе представить, как врачи берут у пациента клетки кожи, перепрограммируют их, а затем получают из индуцированных плюрипотентных стволовых клеток тот тип зрелых клеток, который им нужен. А поскольку это клетки самого пациента, можно не беспокоиться, что наступит отторжение чужеродной ткани.
В 2012 г. Яманака получил Нобелевскую премию. Эта награда была признанием не только практического значения его работ, но и необычного взгляда на роль времени в развитии событий. Август Вейсман представлял себе тело как ветвящееся генеалогическое древо клеток, на котором ветви расходились в определенные моменты времени. Мы могли бы разделить наше развитие на ключевые этапы: день 1 – оплодотворение, день 2 – две тотипотентных клетки и т. д. по всему жизненному календарю. Каждый этап зависит от предыдущего и поэтому наступает строго после него. Сердце не может сформироваться раньше, чем образуется три зародышевых слоя. С течением времени наша внутренняя наследственность становится все более жесткой, навязывая каждой линии клеток неизменную судьбу до самой смерти.
Яманака показал, что на самом деле разницу между эмбриональной клеткой и клеткой желчного пузыря или волосковой клеткой внутреннего уха определяет не время. Наши предки эволюционировали таким образом, чтобы в определенные периоды в клетках происходили определенные биохимические реакции. Зато мы можем просто перебросить клетку из одного состояния в другое.
Своими исследованиями Яманака не просто подорвал власть времени, он также разрушил устоявшиеся представления о зародышевой линии. Ее рассматривали как важнейшую связующую нить – единственную, по которой наследственность передается от одного поколения к другому. Но это оказалось просто удобным заблуждением. Когда яйцеклетка и сперматозоид соединяются, образуется эмбрион, у которого нет ни одной отдельной клетки зародышевой линии. На ранних этапах любая клетка может дать начало новым половым клеткам (как и клеткам других типов). Иными словами, зародышевая линия прерывается и восстанавливается только на более поздних этапах развития эмбриона. Превратив соматические клетки в зародышевые, Яманака обошел вейсмановский барьер.
Индуцированные плюрипотентные клетки ведут себя почти так же, как клетки эмбриона в начале развития, пока не восстановится зародышевая линия. Получив правильные сигналы, они могут стать половыми клетками – равно как и клетками других типов. В 2007 г. Яманака с коллегами ввел индуцированные плюрипотентные клетки в эмбрион самца мыши и обнаружил, что некоторые из этих клеток развились в сперматозоиды. Эти химерные мыши могли даже стать отцами с помощью сперматозоидов, полученных от клеток другой мыши.
Читать дальше