__________
В 1999 г. японский биолог Синъя Яманака, надеясь оставить свой след в переполненной научной области, создал новую лабораторию в Институте науки и технологий Нары [1147] Scudellari 2016.
. До того как переехать в Нару, Яманака обнаружил несколько генов, которые были активны на ранних этапах развития эмбриона мыши. Много исследователей изучало эмбриональное развитие этого зверька, выясняя, как же происходит специализация клеток. Они определяли белки, которые могли подтолкнуть стволовую клетку к тому, чтобы она стала мышечной, нейроном или клеткой какого-то другого типа. В 1990-х гг. исследования эмбриональных клеток дали надежду на создание нового способа борьбы с заболеваниями. Ученые брали одну клетку из эмбриона, полученного в репродуктивной клинике, и выращивали из нее в лаборатории колонию эмбриональных клеток. С помощью правильных химических сигналов удавалось в течение полугода поддерживать размножение таких клеток в культуре. Некоторые ученые тогда предсказывали, что с использованием подобного подхода окажется возможным выращивать нужные ткани. Страдающим болезнью Паркинсона можно было бы подсаживать здоровые нейроны. Перенесшим инфаркт врачи были бы в состоянии восстанавливать сердечную мускулатуру с помощью новых клеток.
Яманака подумал, что если он присоединится к этой гонке, то его затопчут в толпе. Поэтому он решил развернуться на 180 градусов. Отказавшись от поиска способов превращать эмбриональные клетки во взрослые, он попытался сделать из взрослых клеток эмбриональные.
Никто до него не пытался исполнить такой трюк, и на то были свои причины. Представлялось очевидным, что повернуть развитие вспять невозможно. Если вы проследите родословную, показывающую происхождение каждой клетки взрослого тела от зиготы, вы пройдете длинным и извилистым путем. Там будут сотни и тысячи точек ветвления на каждом участке, где клетка делилась на две. И в каждом клеточном поколении будет свой набор химических сигналов, благодаря которому в следующем поколении окажется уже другой набор веществ. Для превращения клетки кожи в эмбриональную предстояло, похоже, пройти весь этот путь назад, прокрутив всю биохимию в обратную сторону.
Однако Яманака полагал, что эту нашу внутреннюю наследственность вообще-то не так уж и сложно преодолеть. Такую надежду в него вселили некоторые эксперименты прошлых лет. Например, в 1960 г. британский биолог Джон Гёрдон разрушил ядро в яйцеклетке лягушки и заменил его ядром из клетки эпителия кишечника этого животного. Яйцеклетка начала делиться и в конце концов развилась во взрослое животное.
В этом эксперименте Гёрдон впервые клонировал животное. И в процессе работы он доказал, что гены во взрослой клетке возможно перепрограммировать так, чтобы снова создать эмбрион. В 1996 г. шотландский эмбриолог Иэн Уилмут совместно со коллегами повторил практически то же самое, но с овцой, создав клон по имени Долли.
Яманака задумался, а нет ли более простого способа перестроить взрослую клетку так, чтобы она стала эмбриональной. С целью понять, в чем заключаются особенности эмбриональной клетки, он проанализировал, какие гены активны только на эмбриональной стадии развития и выключены во взрослой клетке. Яманака обнаружил, что некоторые из этих генов кодировали белки, которые действовали как главные переключатели. Они прикреплялись сразу ко многим генам и включали или выключали их. Исследователь предположил, что можно заполнить соматические клетки такими белками. Тогда они смогут взять гены под контроль, заставив клетки снова вернуться в эмбриональное состояние.
Ученый понимал, что шансов на успех немного. Хотя он знал о нескольких белках, которые были активны в эмбриональных клетках, он понятия не имел, сколько всего белков ему нужно учесть. Это могли быть десятки и даже сотни. Яманака рассказывал: «В то время мы думали, что выполнение проекта займет 10, 20, 30 лет и даже больше» [1148] Yamanaka 2012.
.
Яманака основал свою лабораторию, чтобы начать поиск этих белков в эмбрионах мыши. За пять лет ему с сотрудниками удалось найти две дюжины. Затем ученые проверили каждый ген, чтобы понять, способен ли он перепрограммировать взрослую клетку. Исследователи по очереди добавляли во взрослые клетки кожи мыши дополнительные копии каждого из этих генов. Это приводило к появлению новых молекул исследуемых белков. Но взрослая клетка упорно продолжала оставаться взрослой.
Читать дальше