Биолог из Массачусетского университета Линн Маргулис заявила, что существует лишь один способ объяснить это открытие: пришла пора вспомнить старые теории Альтмана и других пионеров клеточной биологии. Полученные данные свидетельствовали о том, что митохондрии произошли от свободноживущих бактерий и до сих пор сохранили некоторые первоначальные гены.
Маргулис оказалась права. В 1970-х гг. ученые приступили к секвенированию митохондриальной ДНК. Они искали наиболее похожие гены у других видов и все чаще обнаруживали, что митохондрии больше всего напоминают бактерий. Исследователи смогли даже выделить одну конкретную наиболее генетически сходную с митохондриями группу, это оказались альфа-протеобактерии [925] Wang and Wu 2015.
.
Сейчас мы знаем, что, прежде чем заполучить митохондрий, наши предки были одноклеточными организмами, которые жили, потребляя какой-то молекулярный «мусор», их окружающий. Примерно 1,8 млрд лет назад у них внутри навсегда поселился вид мелких бактерий, а конкретно альфа-протеобактерий. Изучение современных альфа-протеобактерий позволило ученым выдвинуть несколько предположений, как именно могло произойти такое объединение [926] Martin et al. 2017.
. Некоторые исследователи считают, что альфа-протеобактерии проскользнули в более крупные клетки как паразиты. Их хозяева сделали все возможное, чтобы уничтожить оккупантов, но альфа-протеобактерии сформировали свою систему защиты. Со временем они перестали перемещаться из клетки в клетку. Когда их хозяин делился, альфа-протеобактерии оказывались в каждой из дочерних клеток.
Другие ученые предположили, что сначала два микроба жили бок о бок. Они обменивались необходимыми питательными веществами, помогая друг другу благоденствовать. Чем ближе они оказывались к своему партнеру, тем надежнее становился обмен. В итоге эти клетки слились полностью.
Как бы то ни было, приобретение клетками митохондрий – один из крупнейших скачков в эволюции жизни. Теперь клетка могла получать топливо, производимое ее новыми жильцами. Чем больше митохондрий клетке удавалось в себе разместить, тем больше энергии было в ее распоряжении. Этот симбиоз придал большой толчок развитию, позволив эукариотическим клеткам стать гораздо крупнее и гораздо сложнее тех, что существовали ранее. Отныне не было нужды питаться молекулярными отходами – у эукариот теперь имелось достаточно топлива, чтобы гоняться за бактериями и поглощать их. Позже эти одноклеточные хищники начали склеиваться друг с другом, превращаясь в многоклеточных существ.
Устроившись в своем новом доме, митохондрии пошли по тому пути, которым обычно идут эндосимбионты. Они утратили многие гены, нужные им для самостоятельной жизни. Но митохондрии никогда не отказывались от собственной наследственности. Альтман, возможно, ошибался, считая митохондрий свободноживущими жизненными формами. Но он оказался прав, что подумал именно о бактериях, когда наблюдал за делением митохондрий. Внутри клетки митохондрия делится на две части, и дочерние митохондрии наследуют копии ее ДНК точно так же, как это происходило у их свободноживущих предков примерно 2 млрд лет назад.
Когда наша собственная клетка делится, дочерние клетки наследуют часть ее митохондрий, которые продолжают делиться на всем протяжении нашей жизни. Мы не переполняемся ими, потому что наши клетки, контролируя количество митохондрий, иногда их разрушают. Смерть организма обрывает линию митохондрий, живших в теле; шанс шагнуть в грядущее есть лишь у тех, которые обитают в яйцеклетках. У мужских митохондрий нет будущего, поскольку во время оплодотворения они разрушаются прямо в сперматозоиде.
Благодаря тому что митохондрии наследуются исключительно по материнской линии, их ДНК – мощный генеалогический инструмент. Используя его, ученые смогли идентифицировать семью Николая II. Другие исследователи с его помощью объединили всех ныне живущих людей, проследив их митохондриальную ДНК до одной женщины, жившей в Африке более 150 000 лет назад. Однако это независимое наследование митохондриальной ДНК может породить и большие проблемы [927] Stewart and Chinnery 2015.
.
Когда митохондрии копируют свою ДНК, они иногда ошибаются и возникает мутация. Некоторые из этих мутаций всего лишь нарушают работу системы, производящей топливо, но другие вызывают тяжелые наследственные заболевания. Они могут привести к слепоте, глухоте, атрофии мышц. Генетики десятилетиями не обращали внимания на многие такие наследственные заболевания, поскольку для них не выполнялся закон Менделя. В некоторых семьях болезнь только иногда поражает кого-то из родственников на протяжении многих поколений. В других семьях такое же заболевание может возникать у всех детей матери – носительницы мутации.
Читать дальше