Вернемся теперь к кристаллам тартрата. Пастер заметил, что, если растворить тартрат в воде, из раствора возникают два типа кристаллов — во всем идентичные, но выглядящие словно зеркальные отражения друг друга. Он тщательно рассортировал их. А заново растворив кристаллы каждого типа по отдельности, получил два различных раствора — две разновидности разведенного тартрата. И хотя во многих отношениях эти два раствора были одинаковыми, Пастер обнаружил, что они вращают поляризованный свет в противоположных направлениях. Отсюда общепринятые названия таких молекул — лево- и правовращающие, поскольку первые поворачивают плоскость поляризации света против часовой стрелки, а вторые — по часовой стрелке. Как вы, должно быть, догадываетесь, когда оба раствора снова кристаллизовали, каждый дал начало кристаллам только одного типа, которые были как будто зеркальным отражением кристаллов, полученных из другого раствора.
Эти «зеркальные» молекулы в самом деле различаются в той же степени, как левый и правый ботинок: сколько ни старайся, нельзя развернуть их таким образом, чтобы они могли заменить друг друга. Во взятом Пастером исходном растворе содержалась смесь из обеих разновидностей, и при кристаллизации каждая молекула стремилась пристроиться к молекулам своего собственного типа. Существование двух (или более) четко различимых вариантов некоего явления — условие, для наличия подлинной наследственности необходимое, но не достаточное. Чтобы обзавестись настоящей наследственностью, кристаллам, дорастающим до некоего критического размера, следовало бы расщепляться надвое и каждой половинке — служить матрицей для формирования нового полноразмерного кристалла. Будь оно так, у нас действительно была бы растущая популяция, представленная двумя соперничающими типами кристаллов, и применительно к ней правомерно было бы говорить об «успехе» — ведь раз обе разновидности молекул конкурируют за одни и те же составляющие их атомы, одна из них могла бы стать более многочисленной за счет другой, в силу «лучшего» умения создавать копии самой себя. К сожалению, подавляющее большинство молекул таким замечательным свойством — наследственностью — не обладает.
Я сказал «к сожалению», потому что химики, которым в медицинских целях бывает необходимо синтезировать, скажем, только левовращающие молекулы, дорого бы дали за возможность «размножать» их. Но если какие молекулы и служат шаблонами для образования других молекул, то производят они обычно не подобную самим себе форму, а свое зеркальное отражение. Это затрудняет задачу, поскольку, имея изначально левовращающую форму, в итоге вы получаете смесь из лево- и правовращающих молекул, представленных в равных количествах. Химики, специализирующиеся в данной области, всячески стараются «обмануть» молекулы, заставляя их «плодить» дочерние молекулы той же самой пространственной ориентации. И такая уловка осуществима с большим трудом.
Как бы то ни было, нечто подобное этой уловке произошло естественно и самопроизвольно четыре тысячи миллионов лет назад, когда мир был молод, — с того-то момента и берет свое начало взрыв жизни и информации. (Возможно, впрочем, что наследуемым признаком тогда была не лево- и правосторонняя конфигурация молекул, а что-то другое.) Но для нормального протекания такого взрыва требуется нечто большее, чем просто наследственность. Даже если левовращающая и правовращающая формы некой молекулы действительно обладают способностью передавать свои свойства потомству, последствия их конкуренции не будут особенно интересными, поскольку разновидностей только две. Как только кто-то — к примеру, левши — одержит победу в соревновании, на этом вся история и закончится. Никакого дальнейшего развития не будет.
Более крупные молекулы могут обладать право- и левосторонней ориентацией в различных участках своей структуры. Так, у молекулы антибиотика монензина семнадцать центров асимметрии, каждый из которых имеет либо левовращающую, либо правовращающую конфигурацию. Двойка, помноженная на саму себя 17 раз, дает число 131 072 — следовательно, существует именно столько четко различимых форм данной молекулы. Если бы эти 131 072 разновидности обладали таким свойством, как подлинная наследственность, то есть если бы каждая молекула могла порождать себе подобные, вышло бы весьма замысловатое соревнование, где представители наиболее успешной разновидности из 131 072 постепенно становились бы все многочисленнее. Но даже такой вариант наследственности был бы неполноценным, поскольку 131 072 — число хоть и большое, но конечное. Чтобы взрыв жизни заслуживал своего названия, требуется не только наследственность, но и бесконечная, неограниченная изменчивость.
Читать дальше
Конец ознакомительного отрывка
Купить книгу