Подогрев субстрата в реакторах сейчас все чаще производят методом постоянного прокачивания содержимого реактора через внешний теплообменник. Это заметно упрощает и удешевляет систему поддержания температуры, но при этом не гарантирует высокую стабильность температуры субстрата внутри реактора. А от стабильности и плавности регулировки температуры зависит интенсивность жизнедеятельности бактерий и, соответственно, скорость выработки биогаза. Наиболее перспективной выглядит система подогрева «теплый пол» при хорошо теплоизолированных стенах. Таким образом, можно обеспечить максимальную равномерность температуры субстрата внутри реактора. Это условие очень важно для организации работы реактора в термофильном режиме. Современные большие биогазовые установки обычно работают в мезофильном режиме, потому что термофильный режим не настолько стабилен, и требует особенно тщательного выдерживания всех параметров анаэробного брожения. А в случае остановки реакции анаэробного брожения в реакторе мы получим более двух тысяч тонн непригодного к использованию шлама с одного только реактора, которых у установки может быть несколько. Этот шлам надо будет куда-то слить и безопасно утилизировать. А при таких количествах эта задача потребует много средств и времени. Поэтому обычно и используют более стабильный мезофильный режим. Хотя термофильный режим позволяет уменьшить в два раза все реакторы биогазовой установки при той же пропускной способности, что существенно уменьшает стоимость установки.
Большинство современных больших биогазовых установок оборудовано купольным газгольдером, устанавливаемым прямо на реактор вместо крыши. Это решение имеет много преимуществ, но все же более перспективным представляется применение отдельных внешних газгольдеров в виде свободнолежащих мешков с компрессором, ресивером и редуктором. Это дает большую гибкость при построении системы, а также позволяет размещать некоторые узлы на крыше реакторов, или размещать реакторы в помещении для утилизации вторичного тепла и работы в условиях чрезвычайно низких температур окружающего воздуха.
Многие современные большие биогазовые установки, особенно работающие на растительном сырье, имеют громадные сборники для шлама, но не оборудованы сепаратором для разделения шлама на фракции. Это обусловлено меньшим качеством биогумуса из растительного сырья и законодательными сложностями в Европе по внесению такого шлама в почву. Также это обусловлено несовершенством имеющихся техпроцессов, которые никак не защищены от повышения концентрации ионов аммония в субстрате. Такое повышение концентрации ионов аммония происходит при закольцовывании фильтрата на вход биогазовой установки, если исходное сырье было богато протеинами. При сепарации шлама необходимо будет девать куда-то очень большие объемы фильтрата. Системы очистки его до технической воды стоят дорого. Чтобы продавать его в качестве биоудобрения, нужно уметь организовать сбыт, транспортировку и преодолеть множественные европейские законодательные рогатки. Хотя на самом деле вреда от такого фильтрата при грамотном использовании нет никакого, наоборот, только большая польза.
Вот и получается, что биогазовые энергопарки , рассчитанные для работы на привозном силосе, простаивают из-за непродуманности сбыта выходного шлама. Исходный силос имеет влажность не более 70%, а выходной шлам – 92%. Соответственно, шлама выходит из установки по весу в 3,5 раза больше, чем привозится силоса. Значит, в 3,5 раза дороже и транспортировка шлама к потребителям. На самом деле она еще дороже, поскольку для транспортировки жидкого шлама нужны совсем другие транспортные средства, чем простые грузовики для перевозки силоса.
Поэтому будущее – за техпроцессами, в которых максимум выходного фильтрата направляется на вход биогазовой установки, соответственно, уменьшается выход фильтрата или потребность в свежей воде. Идеально, когда можно сбалансировать влажность субстрата так, чтобы весь фильтрат закольцовывался и вода совсем не была бы нужна. Для этого применяются специальные конструкции биогазовых установок и техпроцессы, которые позволяют механическими методами нейтрализовать вредное воздействие ионов аммония на жизнедеятельность анаэробных бактерий (по вопросам поставки именно таких конструкций обращайтесь к нам).
Системы автоматики у всех биогазовых установок примерно одинаковы. Они позволяют автоматизировать техпроцесс настолько, что труд человека требуется преимущественно для надзора за исправностью всех узлов. Также современные системы автоматики позволяют организовать удаленный контроль параметров техпроцесса через сеть Интернет.
Читать дальше