По-видимому, мембранные белки АТФ-синтетазы образуют проводящий протоны канал, который связывает «гриб» с противоположной (наружной) стороной мембраны митохондрии. «Гриб», как пробка в графине, закрывает выход из канала на внутренней стороне мембраны. После удаления «гриба» канал становится сквозным, связывая между собой вне- и внутримитохондриальные пространства. Олигомицин нарушает работу канала.
Если «гриб» отделен от мембраны и свободно плавает в воде, то гидролиз АТФ не может привести к созданию протонного потенциала просто из-за отсутствия мембраны, разделяющей пространство на два изолированных отсека.
Если «гриб» прикреплен к мембране и состыкован с каналом, то гидролиз АТФ сопровождается переносом протонов из митохондрии наружу.
Проще всего этот процесс можно представить себе следующим образом. Внутри митохондрий АТФ связывается с «грибом», переносится куда-то в глубь мембраны и там расщепляется на анионы АДФ и фосфата (АДРО- и -ОР):
АДРОР + Н2O → АДРО- + -ОР + 2Н+, где АТФ обозначен как АДРОР.
Затем ионы Н+ выделяются в канал и выходят наружу, а АДРО- и -ОР переносятся внутрь митохондрии и там связывают протоны:
АДРО- + -ОР + 2Н+внутр. → АДРОН + НОР.
Процесс в целом описывается уравнением: АДРОР + 2Н2O + 2Н+внутр. → =АДРОН + НОР + 2Н+наружн.
Реакция гидролиза АТФ сопровождается выделением энергии. Поэтому сопряженный с ней перенос ионов Н+ изнутри митохондрий наружу получает возможность идти в энергетически невыгодном направлении, создавая внутри нехватку ионов Н+ и положительных зарядов. Эта нехватка должна возрастать по мере того, как все новые молекулы АТФ гидролизуются митохондрией.
Значит, чем дольше работает АТФазный генератор, тем труднее ему переносить ионы Н+ через мембрану. В конце концов генератор выключится вовсе. Это произойдет в момент, когда выигрыш в энергии от гидролиза уравняется с проигрышем в энергии, сопутствующим переносу ионов Н+ против электрического поля из отсека, где ионы Н+ в дефиците, в отсек, где они в избытке.
Если теперь включить какой-нибудь другой протонный генератор, откачивающий ионы Н+ из митохондрий, например, за счет энергии дыхания, то митохондриям окажется выгоднее впускать внутрь ионы Н+, синтезируя АТФ, чем выталкивать ионы, гидролизуя АТФ. Другими словами, итоговая реакция, приведенная выше, изменит направление и потечет справа налево. Гидролиз АТФ сменится его синтезом, то есть возникнет процесс дыхательного фосфорилирования.
Таковы общие черты устройства протонной АТФ-синтетазы. Однако существенные детали этого механизма все еще остаются неясными, затрудняя выбор между несколькими возможными схемами, призванными описать принцип его работы.
Один из ключевых вопросов — это как, каким способом АТФ, АДФ и фосфат переносятся из водной фазы митохондрии в гидрофобную фазу митохондриальной мембраны, чтобы попасть в сферу действия электрического поля?
АТФ, АДФ и фосфат — это весьма гидрофильные многозарядные анионы. Их сродство к воде очень велико, а к липиду — ничтожно. Чтобы помочь этим веществам перейти из воды внутрь мембраны, необходимо какое-то специальное приспособление. Что бы это могло быть?
Помня, каким скользким может быть путь аналогий, мы тем не менее рискнем обратиться к другой белковой системе, также присутствующей в митохондриальной мембране и имеющей дело с АТФ и АДФ. Я имею в виду так называемый АТФ/АДФ-антипортер.
М. Клингенбергом был получен в чистом виде и подробно исследован мембранный белок массой 30 кило-дальтон, способный обменивать содержащийся в митохондриях АТФ на внемитохондриальный АДФ (этот процесс обозначается термином «антипорт»). Выяснилось, что у антипортера есть два места связывания АТФ и АДФ. Белок закреплен в мембране таким образом, что эти два места обращены в воду по разные стороны мембраны. Если к белку на внутренней поверхности мембраны присоединяется АТФ, а на внешней — АДФ, то молекула белка поворачивается на 180 градусов или совершает какое-то более сложное движение, в результате которого участок белка с АТФ появляется снаружи митохондрии, а участок с АДФ - внутри.
Поворот в обратном направлении затрудняется электрическим полем, генерируемым на мембране митохондрий за счет дыхания. Дело в том, что АТФ несет на себе четыре отрицательных заряда, а АДФ — только три. Обмен наружного АТФ4- на внутренний АДФ3- означал бы перенос внутрь митохондрии отрицательного заряда против электрического поля. В то же время обратный процесс должен идти по полю, которое может быть движущей силой такого обмена.
Читать дальше