Александр Кириченко - Основы теории искусственных нейронных сетей

Здесь есть возможность читать онлайн «Александр Кириченко - Основы теории искусственных нейронных сетей» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: russian_contemporary, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Основы теории искусственных нейронных сетей: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Основы теории искусственных нейронных сетей»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Искусственные нейронные сети – один из разделов науки Искусственный интеллект. Рассматриваются 4 уровня нейросетевого моделирования и 4 вида наиболее продуктивных нейронных сетей. Проведен анализ эффективности использования различных нейросетей при решении практических задач. Книга предназначена для знакомства с нейросетевыми технологиями.

Основы теории искусственных нейронных сетей — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Основы теории искусственных нейронных сетей», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если µ = 0, то вход считается необученным – в этом случае импульсация на этот вход не оказывает никакого влияния на состояние нейрона. Максимально обученный вход (µ = 1) работает аналогично входу возбуждения с весом W, пока значение µ снова не изменится (уменьшится).

Обучение, переобучение, разобучение – механизмы, регулирующие значение µ и, как следствие, работу входов памяти нейрона.

Разобучение – уменьшение µ, происходит в тех случаях, когда сигнал, поступивший на вход памяти, не был подкреплён последующим сигналом на вход возбуждения, или не сопровождался регулирующей импульсацией (при этом T ≥T 0). В этой ситуации значение µ уменьшится на ∆µ-.

Таким образом, вход памяти отличается от входа возбуждения умением менять значимость своего вклада в общий потенциал в зависимости от характера импульсации.

В результате обзора существующих моделей становится видно, что существует достаточное количество нейронов, описывающих естественный нейрон очень упрощенно. Они нашли свое применение в области распознавания образов, для решения задач классификации и т. д. Также существует множество моделей, которые при описании нейрона ставят своей целью количественное описание поведения нейрона. Однако до сих пор остается непонятным, приводит ли усложнение нейрона, попытки отображения им все новых свойств естественного нейрона, к существенному прогрессу и улучшению результатов решаемых нейронами задач.

Нейронные ансамбли

В нервной системе, особенно в ее периферических отделах, существуют устойчивые, генетически предопределенные конфигурации нервных клеток – нейронные ансамбли или ганглии , функции которых обычно ограничены и предопределены спецификой периферического отдела в организме.

В практике нейронного моделирования в ряде случаев также оказывается полезным рассматривать ограниченную совокупность искусственных нейронов (ИН), как искусственный нейронный ансамбль (ИНА), который имеет жесткую не подлежащую переобучению структуру, определяемую задачей обработки информации.

Понятие ИНА позволяет расширить ограниченный набор вычислительных возможностей одиночного ИН. Переход от одиночного ИН к ИНА можно рассматривать как второй уровень нейронного моделирования.

С точки зрения решения прикладных задач, использование необучаемой «нейронной логики» на основе ИНА вместо традиционной компьютерной логики эквивалентен замене одного функционально полного базиса другим функционально полным базисом. Такая замена не порождает новых уровней функциональности и методов решения задач, и может быть оправдана лишь более эффективной реализацией вычислителя.

В базисе нейронной логики специалистами по нейронному моделированию были предложены решения самых разнообразных задач, которые по эффективности реализации могли конкурировать с вычислителями на обычной логике. Например, на основе нейронов строились элементы электронных вычислительных машин, реализующие различные вычислительные функции.

Кроме вычислительных ИНА, копирующих элементы ЭВМ, нейронные сети могут реализовать элементы, реализующие функции нейроматематики: элементы для выполнения математических операций, например таких, как

– сложение, вычитание, умножение, деление различных чисел,

– преобразования чисел из одной системы счисления в другую,

– перекодировки текста,

– матричных операций,

– генерации случайных чисел,

– построения гистограмм.

Элементы, реализующие функции нейроматематики, в процессе изготовления могут проходить обучение. Во время обучения их можно научить выполнению различных операций, например, научить выполнению сложения или вычитания, умножения или деления. Можно научить и более сложным действиям, превратить их в маленькую экспертную систему. После обучения нейроны обученных ИНА должны быть заблокированы. Образуется обученная нейросеть, в которой возможность переобучения отсутствует.

В каждом из этих случаев создаётся небольшая нейросеть и с помощью универсального нейропакета обучается выполнению необходимой операции. Затем обученная нейросеть извлекается из обучавшего её нейросетевого пакета и сохраняется в виде исходного модуля на каком-либо алгоритмическом языке, либо после компиляции сохраняется в виде исполняемого файла, который может быть включён в состав создаваемой программы.

Одной из главных целей нейронного моделирования является использование принципов построения и функционирования мозга для решения практических задач по обработке информации, трудно поддающихся решению другими средствами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Основы теории искусственных нейронных сетей»

Представляем Вашему вниманию похожие книги на «Основы теории искусственных нейронных сетей» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Основы теории искусственных нейронных сетей»

Обсуждение, отзывы о книге «Основы теории искусственных нейронных сетей» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x