Входной фильтр выходного МОП-транзисторного каскада, состоящий из R 3, R 4, С 2и С 3, образует полосовой фильтр. Он настроен таким образом, что подходит для любых источников низкочастотных сигналов (компакт-диск, виниловая пластинка, магнитофонная пленка), то есть он изначально настроен на наихудший случай. С 2и R 4образуют фильтр верхних частот с граничной частотой 1.52 Гц, R 3и С 3образуют фильтр нижних частот с граничной частотой 159 кГц. Еще несколько лет назад в наиболее качественных усилителях входной фильтр был сконструирован так, что нижняя граница находилась на частоте 0 Гц. Однако в те времена от такой конструкции фильтра пришлось отказаться, так как усилители передавали даже шум вращения винилового диска.
На рис. 12.5 сопоставлены частотная и фазовая характеристики двух вариантов усилителей: с оригинальным входным фильтром и с входным фильтром, в котором конденсатор С 2коротко замкнут, то есть закорочен фильтр верхних частот. Поясним читателям, зачем это сделано.
Рис. 12.5. Амплитудно-частотная и фазо-частотная характеристика двух вариантов выходного МОП-транзисторного каскада
Сегодня, когда источники зашумленного низкочастотного сигнала практически уже не используются (проигрыватели вышли из моды, а магнитофонные ленты выпускаются с существенно улучшенными шумовыми характеристиками), наступило время снова задуматься над нижней граничной частотой усилителей. Хотя человеческое ухо и не воспринимает частоты ниже 17 Гц, нижняя граничная частота, тем не менее, создает заметные сдвиги фазы в слышимой частотной области. Как известно, именно фазовые вариации низкочастотного сигнала создают у слушателей ощущение объемного звука. МОП-транзисторный усилитель позволяет без проблем понизить граничную частоту до 0 Гц. Для этого всего лишь нужно, чтобы конденсатор С 2был коротко замкнут.
Глава 13
Возможности применения программы PSPICE
В этой главе описаны возможные варианты исследований некоторых типичных схем из областей силовой полупроводниковой техники, техники связи и автоматического регулирования.
В двух следующих главах будут проведены исследования некоторых типичных схем из областей силовой полупроводниковой техники, техники связи и автоматического регулирования. Каждое исследование будет проводиться для того, чтобы дать ответ на какой-либо сложный вопрос. Это позволит вам познакомиться со специальными возможностями программы PSPICE и откроет перспективу для проведения множества собственных интересных исследований. Однако практически сразу вы столкнетесь с проблемой, возникающей при профессиональной работе со PSPICE: чем специфичнее будут ваши вопросы, тем чаще будут нужны специальные модели (двигатели трехфазного тока, стабилизаторы, регуляторы, модуляторы, смесители, шаговые двигатели), которых нет ни в демонстрационной, ни в полной версиях программы. И тогда вам понадобится помощь специалистов-разработчиков моделей. Для примеров, рассматриваемых в книге, часть специальных моделей была взята из виртуальной лаборатории spicelab, которую я в настоящее время готовлю к публикации.
13.1. Анализ высокочастотных помех при работе мостовой схемы на тиристорах
Полууправляемая мостовая схема на тиристорах В2Н [42] К сожалению, демонстрационная версия позволяет устанавливать только два, а в очень простых схемах — три тиристора. Причина в том, что для описания поведения тиристоров в программе PSPICE была использована очень дорогостоящая модель. Для многих исследований в области энерготехники это является существенным ограничением. В spicelab есть упрощенный вариант тиристора, благодаря чему в схемах, моделируемых в демонстрационной версии, можно устанавливать до шести таких элементов.
, питающаяся от трансформатора [43] Трансформатор, использованный в этой схеме, находится в библиотеке ANALOG.slb и называется XFRM_LINEAR. Он имеет линейную В-Н-характеристику, то есть без учета насыщения железа сердечника. Атрибутами трансформатора XFRM_LINEAR являются значения индуктивности L 1 и L 2 , а также коэффициент связи Coupling. В энерготехнике коэффициенты связи у трансформаторов имеют значения чуть меньше единицы, например 0.99. Для значений индуктивности действует отношение: L 1 /L 2 =N 1 ²/N 2 ². Таким образом, трансформатор, установленный в схеме на рис. 13.1, с заданными значениями L 1 =576 мГн и L 2 =16 мГн, имеет передаточное отношение N 1 /N 2 ²=6/1. Программа PSPICE позволяет включать в схемы также трансформаторы и с нелинейными характеристиками. Чтобы правильно их использовать, необходимо хорошо знать классификацию магнитных сердечников.
показана на рис. 13.1.
Читать дальше