Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Некоторые операторы представлены двумя символами — например, оператор присваивания переменным их значения := содержит двоеточие и знак равенства. В таких операторах между символами недопустим знак пробела. Однако его можно использовать между отдельными частями выражений — так, (a+b)/c эквивалентно (a + b) / c.

2.1.3. Работа с числами и арифметические вычисления

Maple обеспечивает вполне естественную работу с целыми числами. В частности обеспечивается смена знака числа и выполнение основных арифметических операций с числами. Ввиду общеизвестности арифметических операций их определения не приводятся. Ограничимся примерами простых операций с числами, приведенными ниже:

> 12+34/47;

Maple 9510 в математике физике и образовании - изображение 93

> -12+34*47;

1586

> 12*10^(-15)*3;

Maple 9510 в математике физике и образовании - изображение 94

Результаты операций с целыми числами в общем случае представляются рациональными числами , являющимися отношениями целых чисел.

Десятичная точка в числах имеет особый статус — указание ее в любом месте числа, в том числе в конце, делает число вещественным и ведет к переводу вычислений в режим работы с вещественными числами. Например:

> 12.*10^(-15)*3;

.3600000000 10 -13

Количеством выводимых после десятичной точки цифр можно управлять, задавая значение системной переменной окружения Digits:

> Digits:=3: 1./3;

.333

> Digits:=10; ехр(1.);

Digits := 10
2.718281828

> Digits:=40: evalf(Pi);

3.141592653589793238462643383279502884197

Как видно из этих примеров, ввод и вывод чисел имеет следующие особенности:

• для отделения целой части мантиссы от дробной используется разделительная точка;

• нулевая мантисса не отображается (число начинается с разделительной точки);

• мантисса отделятся от порядка пробелом, который рассматривается как знак умножения;

• мнимая часть комплексных чисел задается умножением ее на символ мнимой единицы I (квадратный корень из -1);

• по возможности Maple представляет численный результат в виде точного рационального числа (отношения двух целых чисел).

Для работы с числами Maple имеет множество функций. Они будут рассмотрены в дальнейшем. С помощью многофункциональной функции convert Maple может преобразовывать числа с различным основанием (от 2 до 36, в том числе бинарные и шестнадцатиричные) в десятичные числа:

> convert("11001111", decimal, binary);

207

> convert("1AF.С", decimal, hex);

431.7500000

> convert("Maple", decimal, 36);

37451282

2.1.4. Точная арифметика

Благодаря возможности выполнения символьных вычислений Maple, как и другие СКА, реализует точную арифметику. Это значит, что результат может быть получен с любым числом точных цифр. Однако надо помнить, что идеально точные численные вычисления выполняются только в случае целочисленных операций, например, таких как приведены ниже:

> 101!;

942594775983835942085162312448293674956231279470254376832 \
788935341697759931622147650308786159180834691162349000 \
3549599583369706302603264000000000000000000000000

> (101!+1)-101!;

1

> (10005!)/10000!;

100150085022502740120

> 2^101-2^100;

1267650600228229401496703205376

> 2^(2^(2^2));

65536

> 2^101-2^100.0;

0.1267650600 10³¹

> Digits;

10

Обратите внимание на то, что в последнем примере точность резко потеряна, так как показатель степени 100.0 был задан как число с плавающей точкой. Соответственно и результат оказался в форме такого числа. Число верных цифр результата задает системная переменная Digits (по умолчанию 10).

Приведем еще пару примеров точных вычислений некоторых функций (с точностью до 150 знаков мантиссы):

> evalf(ехр(1),150);

2.71828182845904523536028747135266249775724709369995957496 \
696762772407663035354759457138217852516642742746639193 \
200305992181741359662904357290033429526

> evalf(sin(1.),150);

0.84147098480789650665250232163029899962256306079837106567 \
275170999191040439123966894863974354305269585434903790 \
7920674293259118920991898881193410327729

2.1.5. Вычисление числа π с произвольной точностью

Разработчики систем Maple и Mathematica утверждают, что в принципе возможны вычисления и с плавающей точкой с заданием до миллиона точных цифр мантиссы. Практически такая точность почти никогда не нужна, по крайней мере для физиков и инженеров. Например, всего 39 точных цифр числа π достаточно, чтобы вычислить длину окружности всей Вселенной с точностью до диаметра атома водорода. Однако истинные математики одно время были просто «помешаны» на вычислении числа π с большой точностью. Кое кто потратил на это всю жизнь. Выдающийся вклад в такие расчеты внес Рамануджан, который еще в 1916 году предложил алгоритмы и формулы для вычисления числа π с произвольной точностью.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x