График решения этого уравнения (рис. 7.6) представляет хорошо известную синусоидальную функцию. Интересно, что амплитуда колебаний в общем случае отлична от 1 и зависит от значения у(0) — при у(0)=0 она равна 1 (в нашем случае синусоида начинается со значение у(0)=-1). Подобным осциллятором может быть LC-контур или механический маятник без потерь.
Рис. 7.6. Решение дифференциального уравнения идеального осциллятора
7.2.4. Дополнительные примеры решения дифференциальных уравнений второго порядка
Ниже представлено решение еще двух дифференциальных уравнений второго порядка в аналитическом виде (de2a):
> restart: dsolve(diff(y(x),x$2)-diff(y(x),x)=sin(x),y(x));
у(x) = -½sin(x) + ½cos(x) + e x_C1 + _C2
> de:=m*diff(y(x),x$2)-k*diff(y(x),x);
> yx0:=y(0)=0,y(1)=1;
ух0:= у(0) = 0, у(1) = 1
> dsolve({de,yx0},y(x));
Ряд примеров на применение дифференциальных уравнений второго порядка при решении практических математических и физических задач вы найдете в главе 11.
7.2.5. Решение систем дифференциальных уравнений
Функция dsolve позволяет также решать системы дифференциальных уравнений. Для этого она записывается в виде
dsolve(ODE_sys, optional_1, optional_2,...)
Здесь ODE_sys — список дифференциальных уравнений, образующих систему, остальные параметры опциональные и задаются по мере необходимости. Они могут задавать начальные условия, явно представлять искомые зависимости, выбирать метод решения и т.д. Детали задания опциональных параметров можно найти в справке.
На рис. 7.7 представлено решение системы из двух дифференциальных уравнений различными методами — в явном виде, в виде разложения в ряд и с использованием преобразования Лапласа. Здесь следует отметить, что решение в виде ряда является приближенным. Поэтому полученные в данном случае аналитические выражения отличаются от явного решения и решения с применением преобразования Лапласа.
Рис. 7.7. Решение системы из двух дифференциальных уравнений различными методами
Следует отметить, что, несмотря на обширные возможности Maple в области аналитического решения дифференциальных уравнений, оно возможно далеко не всегда. Поэтому, если не удается получить такое решение, полезно попытаться найти решение в численном виде. Практически полезные примеры решения дифференциальных уравнений, в том числе с постоянными граничными условиями, вы найдете в Главе 11.
7.2.6. Модель Стритера-Фелпса для динамики кислорода в воде
В качестве еще одного примера решении системы из двух дифференциальных уравнений рассмотрим модель Стритера-Фелпса, предложенную для описания динамики содержания растворенного в воде кислорода. Описание этой модели можно найти в [41]. Ниже представлено задание этой модели в виде системы из двух дифференциальных уравнений и их аналитическое решение (файл demp):
> sys := diff(x1(t),t) = K1*(C-x1(t))-K2*x2(t), diff(x2(t),t) = -K2*x2(t);
> dsol := dsolve({sys,x1(0) =a, x2(0)=b),{x1(t),x2(t)});
Здесь: x1(t) — концентрация в воде растворенного кислорода в момент времени t; x2(t) — концентрация биохимического потребления кислорода (БПК), С — концентрация насыщения воды кислородом, K1 — постоянная скорости аэрации, K2 — постоянная скорости уменьшения (БПК), a — начальное значение x1(t) и b — начальное значение х2(t) при t=0.
В данном случае получены два варианта аналитического решения — основное и упрощенное с помощью функции simplify. Читатель может самостоятельно построить графики зависимостей x1(t) и x2(t).
7.3. Специальные средства решения дифференциальных уравнений
7.3.1. Численное решение дифференциальных уравнений
К сожалению, аналитического решения в общем случае нелинейные дифференциальные уравнения не имеют. Поэтому их приходится решать численными методами. Они удобны и в том случае, когда решение надо представить числами или, к примеру, построить график решения. Поясним принципы численного решения.
Читать дальше
Конец ознакомительного отрывка
Купить книгу