Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Здесь есть возможность читать онлайн «Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: ДМК Пресс, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

void write_x_then_y() {

std::atomic_thread_fence(std::memory_order_release);

x.store(true, std::memory_order_relaxed);

y.store(true, std::memory_order_relaxed);

}

Эти две операции больше не разделены барьером и потому не упорядочены. Барьер обеспечивает упорядочение только тогда, когда находится между сохранением xи сохранением y. Конечно, наличие или отсутствие барьера не влияет на упорядочения, обусловленные отношениями происходит-раньше, которые существуют благодаря другим атомарным операциям.

Данный пример, как и почти все остальные в этой главе, целиком построен на переменных атомарных типов. Однако реальная польза от применения атомарных операций для навязывания упорядочения проистекает из того, что они могут упорядочивать неатомарные операции и тем самым предотвращать неопределенное поведение из-за гонок за данными, как мы видели в листинге 5.2.

5.3.6. Упорядочение неатомарных операций с помощью атомарных

Если заменить тип переменной xв листинге 5.12 обычным неатомарным типом bool(как в листинге ниже), то гарантируется точно такое же поведение, как и раньше.

Листинг 5.13.Принудительное упорядочение неатомарных операций

#include

#include

#include

bool x = false; ←┐ Теперь x — простая

std::atomic y;│ неатомарная

std::atomic z; │ переменная

void write_x_then_y() { (1) Сохранение x

x = true; ←┘ перед барьером

std::atomic_thread_fence(std::memory_order_release);

y.store(true, std::memory_order_relaxed);←┐ Сохранение y

} (2) после барьера

void read_y_then_x() (3) Ждем, пока не

{ │ увидим значение,

while (!y.load(std::memory_order_relaxed));←┘ записанное в 2

std::atomic_thread_fence(std::memory_order_acquire);

if (x) ←┐ Здесь будет прочитано

++z; (4) значение, записанное в 1

}

int main() {

x = false;

y = false;

z = 0;

std::thread a(write_x_then_y);

std::thread b(read_y_then_x);

a.join();

b.join(); (5) Это утверждение

assert(z.load() != 0);←┘ не сработает

}

Барьеры по-прежнему обеспечивают упорядочение сохранения x (1)и y (2)и загрузки y (3)и x (4), и, как и раньше, существует отношение происходит-раньше между сохранением xи загрузкой x, поэтому утверждение (5)не сработает. Сохранение y (2)и загрузка y (3)тем не менее должны быть атомарными, иначе возникла бы гонка за y, но барьеры упорядочивают операции над xпосле того, как поток-читатель увидел сохраненное значение y. Такое принудительное упорядочение означает, что гонки за xнет, хотя ее значение модифицируется в одном потоке, а читается в другом.

Но не только с помощью барьеров можно упорядочить неатомарные операции. Эффект упорядочения мы наблюдали также в листинге 5.10, где пара memory_order_release/ memory_order_consumeупорядочивала неатомарные операции доступа к динамически выделенному объекту. Многие примеры из этой главы можно было бы переписать, заменив некоторые операции с семантикой memory_order_relaxedпростыми неатомарными операциями.

Упорядочение неатомарных операций с помощью атомарных — это та область, где особую важность приобретает аспект расположено-перед отношения происходит-раньше. Если неатомарная операция расположено-перед атомарной, и эта атомарная операция происходит-раньше какой-либо операции в другом потоке, то и неатомарная операция также происходит-раньше этой операции в другом потоке. Именно из этого вытекает упорядочение операций над xв листинге 5.13, и именно поэтому работает пример из листинга 5.2. Этот факт также лежит в основе таких высокоуровневых средств синхронизации в стандартной библиотеке С++, как мьютексы и условные переменные. Чтобы понять, как это работает, рассмотрим простой мьютекс-спинлок из листинга 5.1.

В функции lock()выполняется цикл по flag.test_and_set()с упорядочением std::memory_order_acquire, а функция unlock()вызывает операцию flag.clear()с признаком упорядочения std::memory_order_release. В момент, когда первый поток вызывает lock(), флаг еще сброшен, поэтому первое обращение к test_and_set()установит его и вернет false. Это означает, что поток завладел блокировкой, и цикл завершается. Теперь этот поток вправе модифицировать любые данные, защищенные мьютексом. Всякий другой поток, который вызовет lock()в этот момент, обнаружит, что флаг уже поднят, и потому будет заблокирован в цикле test_and_set(). Когда поток, владеющий блокировкой, закончит модифицировать защищенные данные, он вызовет функцию unlock(), которая вызовет flag.clear()с семантикой std::memory_order_release.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»

Представляем Вашему вниманию похожие книги на «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»

Обсуждение, отзывы о книге «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x