Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Здесь есть возможность читать онлайн «Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: ДМК Пресс, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

template

unsigned count_args(Args ... args) {

return sizeof... (Args);

}

Как и для обычного оператора sizeof, результатом sizeof...является константное выражение, которое, следовательно, можно использовать для задания границ массива и т.п.

А.7. Автоматическое выведение типа переменной

С++ — статически типизированный язык: тип любой переменной известен на этапе компиляции. Более того, программист обязан указать тип каждой переменной. В некоторых случаях имена оказываются очень громоздкими, например:

std::map> m;

std::map>::iterator

iter = m.find("my key");

Традиционно для решения этой проблемы использовались псевдонимы типов ( typedef), позволяющие сократить длину идентификатора типа и избавиться от потенциальных проблем несовместимости типов. Этот способ работает и в C++11, но появился и новый: если переменная инициализируется в объявлении, то в качестве ее типа можно указать auto. Тогда компилятор автоматически выведет тип переменной из типа инициализатора. Следовательно, приведенный выше пример итератора можно записать и так:

auto iter = m.find("my key");

Спецификатор autoнеобязательно употреблять изолированно; его можно использовать в сочетании с другими спецификаторами для объявления const-переменных, а также указателей и ссылок. Вот несколько примеров объявления переменных с помощью autoи дополнительных конструкций:

auto i = 42; // int

auto& j = i; // int&

auto const k = i; // int const

auto* const p = &i; // int * const

Правила выведения типа переменной основаны на правилах, применяемых в другом месте языка, где выводятся типы: параметры шаблонов функций. В объявлении вида

Какое-то-типовое-выражение-включающее-auto

var = some-expression;

переменная varимеет тот же тип, который был бы выведен, если бы она встречалась в качестве параметра шаблона функции, объявленного с таким же типовым выражением, только autoзаменяется именем типового параметра шаблона:

template

void f(type-expression var);

f(some-expression);

Это означает, что тип массива сводится к указателю, а ссылки опускаются, если только в типовом выражении переменная явно не объявлена как ссылка. Например:

int some_array[45];

auto p = some_array; // int*

int& r = *p;

auto x = r; // int

auto& y = r; // int&

Это позволяет существенно упростить объявление переменных, особенно в случаях, когда полный идентификатор типа очень длинный или даже неизвестен (например, тип результата вызова функции в шаблоне).

А.8. Поточно-локальные переменные

У поточно-локальной переменной имеется отдельный экземпляр в каждом потоке программы. Для объявления поточно-локальной переменной служит ключевое слово thread_local. Поточно-локальными могут быть переменные с областью видимости пространства имен, статические члены классов и локальные переменные. Говорят, что они имеют потоковое время жизни (thread storage duration):

thread_local int x;←┐ Поточно-локальная переменная в

области видимости пространства

имен

class X │ Поточно-локальная

{ │ статическая пере-

static thread_local std::string s;←┘ менная-член класса

};

Необходимо

static thread_local std::string X::s; определение X::s

void foo() {

Поточно-локальная

thread_local std::vector v;←┘ локальная переменная

}

Поточно-локальные переменные в области видимости пространства имен и поточно-локальные статические члены класса конструируются раньше первого использования переменной в той же единице трансляции, но насколько раньше не оговаривается. В одних реализациях поточно-локальные переменные могут конструироваться при запуске потока, в других — непосредственно перед первым использованием в каждом потоке, в третьих — еще в какой-то момент. Возможен и смешанный подход в зависимости от контекста. На самом деле, если ни одна из поточно-локальных переменных в данной единице трансляции не используется, то не гарантируется, что они вообще будут сконструированы. Это позволяет динамически загружать модули, содержащие поточно-локальные переменные — они будут сконструированы в данном потоке при первом обращении потока к переменной из динамически загруженного модуля.

Поточно-локальные переменные, объявленные внутри функции, инициализируются, когда поток управления впервые проходит через объявление переменной в данном потоке. Если функция в данном потоке не вызывалась, то объявленные в ней поточно-локальные переменные не будут сконструированы. Точно такое же поведение характерно для локальных статических переменных, только в этом случае оно применяется в каждом потоке по отдельности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»

Представляем Вашему вниманию похожие книги на «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»

Обсуждение, отзывы о книге «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x