Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Здесь есть возможность читать онлайн «Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: ДМК Пресс, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Семантика перемещения сплошь и рядом используется в библиотеке Thread Library — и в случаях, когда копирование не имеет смысла, но сами ресурсы можно передавать, и как оптимизация, чтобы избежать дорогостоящего копирования, когда исходный объект все равно будет уничтожен. Один пример мы видели в разделе 2.2, где std::move()использовалась для передачи экземпляра std::unique_ptr<>новому потоку, а второй — в разделе 2.3, когда рассматривали передачу владения потоком от одного объекта std::threadдругому.

Ни один из классов std::thread, std::unique_lock<>, std::future<>, std::promise<>, std::packaged_task<>не допускает копирования, но в каждом из них имеется перемещающий конструктор, который позволяет передавать ассоциированный ресурс другому экземпляру и возвращать объекты этих классов из функций. Объекты классов std::stringи std::vector<>можно копировать, как и раньше, но дополнительно они обзавелись перемещающими конструкторами и перемещающими операторами присваивания, чтобы избежать копирования данных из r -значений.

Стандартная библиотека С++ никогда не делает ничего с объектом, который был явно перемещён в другой объект, кроме его уничтожения или присваивания ему значения (путем копирования или, что более вероятно, перемещения). Однако рекомендуется учитывать в инвариантах класса состояние перемещен-из. Например, экземпляр std::thread, содержимое которого перемещено, эквивалентен объекту std::thread, сконструированному по умолчанию, а экземпляр std::string, бывший источником перемещения, все же находится в согласованном состоянии, хотя не дается никаких гарантий относительно того, что это за состояние (в терминах длины строки или содержащихся в ней символов).

А.1.2. Ссылки на r -значения и шаблоны функций

Еще один нюанс имеет отношение к использованию ссылок на r -значения в качестве параметров шаблона функции: если параметр функции — ссылка на r -значение типа параметра шаблона, механизм автоматического выведения типа аргумента шаблона заключает, что тип — это ссылка на l -значение, если функции передано l -значение, или обычный не-ссылочный тип, если передано r -значение. Фраза получилась довольно запутанной, поэтому приведём пример. Рассмотрим такую функцию:

template

void foo(T&& t) {}

Если при вызове передать ей r -значение, как показано ниже, то в качестве Tвыводится тип этого значения:

foo(42);

foo(3.14159);

fоо(std::string());

Но если вызвать foo, передав l-значение , то механизм выведения типа решит, что T— ссылка на l -значение:

int i = 42;

foo(i);

Поскольку объявлено, что параметр функции имеет тип T&&, то получается, что это ссылка на ссылку, и такая конструкция трактуется как обычная одинарная ссылка. Таким образом, сигнатура функции foo()такова:

void foo(int& t);

Это позволяет одному шаблону функции принимать параметры, являющиеся как l -, так и r -значениями. В частности, это используется в конструкторе std::thread(см. разделы 2.1 и 2.2), чтобы в случае, когда переданный допускающий вызов объект является r -значением, его можно было бы не копировать, а переместить во внутреннюю память.

А.2. Удаленные функции

Иногда операция копирования класса лишена смысла. Типичный пример — std::mutex. Действительно, что должно было бы получиться в результате копирования мьютекса? Другой пример — std::unique_lock<>, экземпляр этого класса является единственным владельцем удерживаемой им блокировки. Честное копирование в этом случае означало бы, что у блокировки два владельца, а это противоречит определению. Передача владения, описанная в разделе А.1.2, имеет смысл, но это не копирование. Уверен, вы назовете и другие примеры.

Стандартная идиома предотвращения копирования класса хорошо известна — объявить копирующий конструктор и копирующий оператор присваивания закрытыми и не предоставлять их реализации. Если теперь какой-нибудь внешний по отношению к классу код попытается скопировать объект такого класса, то произойдёт ошибка на этапе компиляции, а если то же самое попытается сделать член класса или его друг, — то ошибка на этапе компоновки (так как реализации отсутствуют):

class no_copies {

public:

no_copies(){}

private:

no_copies(no_copies const&); ← Реализаций нет

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»

Представляем Вашему вниманию похожие книги на «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»

Обсуждение, отзывы о книге «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x