unsigned long const num_blocks =
(length + block_size - 1) / block_size; ←
(1)
std::vector > futures(num_blocks-1);
thread_pool pool;
Iterator block_start = first;
for (unsigned long i = 0; i < (num_blocks - 1); ++i) {
Iterator block_end = block_start;
std::advance(block_end, block_size);
futures[i] = pool.submit(accumulate_block());←
(2)
block_start = block_end;
}
T last_result =
accumulate_block()(block_start, last);
T result = init;
for (unsigned long i = 0; i < (num_blocks - 1); ++i) {
result += futures[i].get();
}
result += last_result;
return result;
}
Сравнивая этот код с листингом 8.4, следует обратить внимание на две вещи. Во-первых, мы работаем с количеством блоков ( num_blocks
(1)), а не потоков. Чтобы в полной мере воспользоваться масштабируемостью пула потоков, мы должны разбить работу на максимально мелкие блоки, с которыми имеет смысл работать параллельно. Если потоков в пуле немного, то каждый поток будет обрабатывать много блоков, но по мере роста числа потоков, поддерживаемых оборудованием, будет расти и количество блоков, обрабатываемых параллельно.
Но, выбирая «максимально мелкие блоки, с которыми имеет смысл работать параллельно», будьте осторожны. Отправка задачи пулу потоков, выбор ее рабочим потоком из очереди и передача возвращенного значения с помощью std::future<>
— всё это операции не бесплатные, и для совсем мелких задач они не окупятся. Если размер задачи слишком мал, то программа, в которой используется пул потоков, может работать медленнее, чем однопоточная.
В предположении, что размер блока выбран разумно, вам не надо заботиться об упаковке задач, получении будущих результатов и хранении объектов std::thread
, чтобы впоследствии их можно было присоединить; все это пул берет на себя. Вам остается лишь вызвать функцию submit()
, передав ей свою задачу (2).
Пул потоков обеспечивает также безопасность относительно исключений. Любое возбужденное задачей исключение передается через будущий результат, возвращенный submit()
, а, если выход из функции происходит в результате исключения, то деструктор пула потоков снимет еще работающие задачи и дождется завершения потоков, входящих в пул.
Эта схема работает для простых случаев, когда задачи независимы. Но не годится, когда одни задачи зависят от других, также переданных пулу.
9.1.3. Задачи, ожидающие других задач
В этой книге я уже неоднократно приводил пример алгоритма Quicksort. Его идея проста — подлежащие сортировке данные разбиваются на две части: до и после опорного элемента (в смысле заданной операции сравнения). Затем обе части рекурсивно сортируются и объединяются для получения полностью отсортированной последовательности. При распараллеливании алгоритма надо позаботиться о том, чтобы рекурсивные вызовы задействовали имеющийся аппаратный параллелизм.
В главе 4, где этот пример впервые был представлен, мы использовали std::async
для выполнения одного из рекурсивных вызовов на каждом шаге и оставляли библиотеке решение о том, запускать ли новый поток или сортировать синхронно при обращении к get()
. Этот подход неплохо работает — каждая задача либо выполняется в отдельном потоке, либо в тот момент, когда нужны ее результаты.
В главе 8 мы переработали эту реализацию, продемонстрировав альтернативный подход, когда количество потоков фиксировано и определяется уровнем аппаратного параллелизма. В данном случае мы воспользовались стеком ожидающих сортировки блоков. Разбивая на части предложенные для сортировки данные, каждый поток помещал один блок в стек, а второй сортировал непосредственно. Бесхитростное ожидание завершения сортировки второго блока могло бы закончиться взаимоблокировкой, потому что число потоков ограничено, и некоторые из них ждут. Очень легко оказаться в ситуации, когда все потоки ждут завершения сортировки блоков, и ни один ничего не делает. Тогда мы решили эту проблему, заставив поток извлекать блоки из стека и сортировать их, пока тот конкретный блок, которого он ждет, еще не отсортирован.
Точно такая же проблема возникает при использовании одного из рассмотренных выше простых пулов потоков вместо std::async
, как в примере из главы 4. Число потоков тоже ограничено, и может случиться так, что все они будут ждать задач, которые еще запланированы, так как нет свободных потоков. И решение должно быть таким же,
как в главе 8: обрабатывать стоящие в очереди блоки во время ожидания завершения сортировки своего блока. Но если мы применяем пул потоков для управления списком задач и их ассоциациями с потоками — а именно в этом и состоит смысл пула потоков, — то доступа к списку задач у нас нет. Поэтому необходимо модифицировать сам пул, чтобы он делал это автоматически.
Читать дальше