Команда pip для pip и команда easy_install для Setuptools являются инструментами для установки и управления пакетами Python. Первую команду использовать предпочтительнее, поскольку она также может удалять пакеты, ее сообщения об ошибке более понятны, а частичные установки пакетов невозможны (если процесс установки даст сбой, все его результаты будут отменены).
Команда virtualenv ( http://pypi.python.org/pypi/virtualenv) позволяет создавать изолированные среды Python. Она создает каталог, содержащий все необходимые исполняемые файлы для использования пакетов, которые могут понадобиться для проекта, написанного на Python. Когда вы активизируете среду с помощью команды в новом каталоге, она добавит его название в конец строки, представляющей собой переменную среды PATH — версия Python в новом каталоге будут обнаружена в первую очередь, в результате чего будут задействованы пакеты в его подкаталогах.
Для того чтобы установить virtualenv с помощью pip, введите эту команду в командной строке консоли PowerShell:
PS C: \> pip install virtualenv
В OS X и Linux (поскольку Python предустанавливается для использования системой или сторонним ПО) необходимо явно разграничивать версии pip для Python 2 и Python 3. В Windows вам не нужно этого делать, поэтому, когда мы говорим pip3, имеем в виду pip для пользователей Windows. Независимо от ОС, как только вы попадаете в виртуальную среду, всегда можете использовать команду pip — неважно, работаете вы с Python 2 или Python 3 (это мы и будем делать на протяжении остальной части книги).
Коммерческие дистрибутивы Python
Ваш отдел IT или преподаватель могут попросить вас установить коммерческий дистрибутив Python. Это необходимо, чтобы упростить работу, которую должна выполнить организация, и поддерживать стабильную среду для нескольких пользователей. Все перечисленные здесь дистрибутивы предоставляют реализацию Python, написанную на C (CPython).
Научный редактор первого черновика этой главы сказал, что мы серьезно недооцениваем неудобства, которые большинству пользователей доставляет обычная версия CPython на Windows: несмотря на существование формата wheels, компилирование и/или связывание внешних библиотек, написанных на C, представляет трудность для всех, кроме опытных разработчиков. Мы предпочитаем CPython, но, если вы собираетесь пользоваться библиотеками или пакетами (а не создавать их или добавлять в них что-то свое), вам следует загрузить коммерческий дистрибутив и просто начать работать (это особенно важно, если вы работаете в Windows). Когда захотите внести свой вклад в проекты с открытым исходным кодом, сможете установить обычный дистрибутив CPython.

Вернуться к оригинальной версии Python будет проще, если вы не станете изменять настройки по умолчанию при установке версий Python от сторонних поставщиков.
Кратко опишем коммерческие дистрибутивы.
• Intel Distribution. Предоставляет удобный и бесплатный доступ к высокоскоростной реализации Python ( https://software.intel.com/en-us/python-distribution). Основной прирост производительности отмечается благодаря связыванию пакетов Python с нативными библиотеками вроде Intel Math Kernel Library (MKL), улучшению работы с потоками, а также благодаря библиотеке Intel Threading Building Blocks (TBB) ( http://bit.ly/intel-tbb-for-python). Для управления пакетами используется conda от Continuum, но подойдет и pip. Дистрибутив можно загрузить самостоятельно либо установить с сайта https://anaconda.org/ в среде conda [22] Intel и Anaconda — партнеры ( http://bit.ly/announce-anaconda-intel ), и все специализированные пакеты компании Intel ( https://anaconda.org/intel ) доступны только при использовании conda. Однако вы всегда можете выполнить команду conda install pip и применить pip (или pip install conda и использовать conda).
( http://bit.ly/intel-python-beta).
Дистрибутив предоставляет стек SciPy и другие распространенные библиотеки, перечисленные в сопроводительных документах (в формате PDF) ( http://bit.ly/intel-python-release-notes). Пользователям Intel Parallel Studio XE доступна коммерческая поддержка, а все остальные могут общаться на форумах. Позволяет вам без особого труда обращаться к научным библиотекам, в остальном ничем не отличается от обычного дистрибутива Python.
• Anaconda от Continuum Analytics. Дистрибутив Python от Continuum Analytics ( https://www.continuum.io/downloads) выпущен под лицензией BSD и предоставляет множество заранее скомпилированных научных и математических бинарных файлов в своем каталоге бесплатных пакетов ( https://repo.continuum.io/pkgs/). Он использует не pip, а другой менеджер пакетов (conda), который также управляет виртуальными средами, но действует скорее как Buildout (рассматривается в подразделе «Buildout» раздела «Инструменты изоляции» главы 3), а не как virtualenv (управляет библиотеками и другими внешними зависимостями для пользователя). Форматы пакетов несовместимы, поэтому вы не сможете вызвать один установщик из каталога пакетов другого.
Читать дальше