Аппаратная реализация целочисленной арифметики достаточно очевидна и в большинстве случаев не приносит неожиданностей. К тому же возможные проблемы в том или ином виде упомянуты во многих книгах по Delphi, поэтому даже начинающий программист обычно готов к ним. В этом разделе мы компактно изложим эти проблемы и объясним причины их появления.
3.1.1. Аппаратное представление целых чисел
Delphi относится к языкам, в которых целые типы данных максимально приближены к аппаратной реализации целых чисел процессором. Это позволяет выполнять операции с целочисленными данными максимально быстро, но заставляет программиста учитывать аппаратные ограничения.
Примечание
Такая реализация целых чисел может также приводить к проблемам при переносе языка на другую аппаратную платформу, но для Delphi это, видимо, не очень актуально.
Целые числа могут быть знаковыми и беззнаковыми. Сначала рассмотрим формат более простых беззнаковых чисел. Если у нас есть N двоичных разрядов для хранения такого числа, то мы можем представить любое число от 0 до 2 N -1. В Delphi беззнаковые целые представлены фундаментальными типами Byte ( N =8, диапазон 0..255), Word ( N =16, диапазон 0..65 535) и LongWord ( N =32, диапазон 0..4 294 967 295).
Примечание
Фундаментальными называются те типы данных, разрядность которых не зависит от аппаратной платформы. Кроме них существуют еще общие (generic) типы, разрядность которых определяется разрядностью платформы. В Delphi это типы Integer
(знаковое целое) и Cardinal
(беззнаковое целое. В имеющейся реализации они имеют 32 разряда, но при переходе на 64-разрядные компиляторы следует ожидать что эти типы также станут 64-разрядными. В частности, в 16-разрядном Turbo Pascal тип Integer
был 16-разрядным а типа Cardinal
там не было).
Знаковые числа устроены несколько сложнее. Старший из N бит, отводящихся на такое число, служит для хранения знака (этот бит называется знаковым). Если этот бит равен нулю, число считается положительным, а оставшиеся N -1 разрядов используются для хранения числа так же, как в случае беззнакового целого (эти разряды мы будем называть беззнаковой частью). В этом случае знаковое число ничем не отличается от беззнакового. Отрицательные значения кодируются несколько сложнее. Когда все разряды (включая знаковый бит) равны единице, это соответствует значению -1. Рассмотрим это на примере однобайтного знакового числа. Числу -1 в данном случае соответствует комбинация 1 1111111 (знаковый бит мы будем отделять от остальных пробелом), т.е. беззнаковая часть числа содержит максимально возможное значение -127. Числу -2 соответствует комбинация 1 1111110, т.е. в беззнаковой части содержится 126. В общем случае отрицательное число, хранящееся в N разрядах равно X -2 N -1, где X — положительное число, хранящееся в беззнаковой части. Таким образом, N разрядов позволяют представить знаковое целое в диапазоне -2 N -1..2 N -1-1, причем значению -2 N -1 соответствует ситуация, когда все биты, кроме знакового равны нулю.
Такая на первый взгляд не очень удобная система позволяет унифицировать операции для знаковых и беззнаковых чисел. Для примера рассмотрим число 11111110. Если его рассматривать как беззнаковое, оно равно 254, если как знаковое, то -2. Вычитая из него, например, 3, мы должны получить 251 и -5 соответственно. Как нетрудно убедиться, в беззнаковой форме 251 — это 11111011. И число -5 в знаковой форме — это тоже 11111011, т.е. результирующее состояние разрядов зависит только от начального состояния этих разрядов и вычитаемого числа и не зависит от того, знаковое или беззнаковое число представляют эти разряды. И это утверждение справедливо не только для выбранных чисел, но и вообще для любых чисел, если ни они, ни результат операции не выходят за пределы допустимого диапазона. То же самое верно для операции сложения. Поэтому в системе команд процессора нет отдельно команд знакового и беззнакового сложения и вычитания — форматы чисел таковы, что можно обойтись одной парой команд (для умножения и деления это неверно, поэтому существуют отдельно команды знакового и беззнакового умножения и деления).
Ранее мы специально оговорили, что такое удобное правило действует только до тех пор, пока аргументы и результат остаются в рамках допустимого диапазона. Рассмотрим, что произойдет, если мы выйдем за его пределы. Пусть в беззнаковой записи нам нужно из 130 вычесть 10. 130 — это 10000010, после вычитания получим 01111000 (120). Но если попытаться интерпретировать эти двоичные значения как знаковые числа, получится, что из -126 мы вычитаем 10 и получаем 120. Такими парадоксальными результатами приходится расплачиваться за унификацию операций со знаковыми и беззнаковыми числами.
Читать дальше
Конец ознакомительного отрывка
Купить книгу