— Ион Бентли (Jon Bentley)
Многие из рекомендаций этой книги естественным образом приводят к легко изменяемому дизайну и коду, а ясность является наиболее желанным качеством для программы, которую легко сопровождать. То, что вы не в состоянии понять, вы не сможете уверенно и надежно переделать.
Вероятно, наиболее распространенным соперничеством в данной области является соперничество между ясностью кода и его оптимизацией (см. рекомендации 7, 8 и 9). Когда — не если — вы находитесь перед соблазном преждевременной оптимизации для повышения производительности и, таким образом, пессимизации для повышения ясности, — вспомните, что говорит рекомендация 8: гораздо проще сделать корректную программу быстрой, чем быструю — корректной. Избегайте "темных закутков" языка. Используйте простейшие из эффективных методов.
Примеры
Пример 1. Избегайте неуместной и/или чересчур хитроумной перегрузки операторов. В одной библиотеке пользовательского графического интерфейса пользователей без нужды заставляют писать w+c
; для того, чтобы добавить в окно w
дочерний управляющий элемент с
(см. рекомендацию 26).
Пример 2. В качестве параметров конструктора лучше использовать именованные, а не временные переменные. Это позволит избежать возможных неоднозначностей объявлений, а также зачастую проясняет назначение вашего кода и тем самым упрощает его сопровождение. Кроме того, часто это просто безопаснее (см. рекомендации 13 и 31).
Ссылки
[Abelson96] • [Bentley00] §4 • [Cargill92] pp. 91-93 • [Cline99] §3.05-06 • [Constantine95] §29 • [Keffer95] p. 17 • [Lakos96] §9.1, §10.2.4 • [McConnell93] • [Meyers01] §47 • [Stroustrup00] §1.7, §2.1, §6.2.3, §23.4.2, §23.4.3.2 • [Sutter00] §40-41, §46 • [Sutter04] §29
7. Кодирование с учетом масштабируемости
Резюме
Всегда помните о возможном росте данных. Подумайте об асимптотической сложности без преждевременной оптимизации. Алгоритмы, которые работают с пользовательскими данными, должны иметь предсказуемое и, желательно, не хуже, чем линейно зависящее от количества обрабатываемых данных время работы. Когда становится важной и необходимой оптимизация, в особенности из-за роста объемов данных, в первую очередь следует улучшать O -сложность алгоритма, а не заниматься микрооптимизациями типа экономии на одном сложении.
Обсуждение
Эта рекомендация иллюстрирует важную точку равновесия между рекомендациями 8 и 9 — не оптимизируйте преждевременно и не пессимизируйте преждевременно. Это делает данный материал трудным в написании, поскольку он может быть неверно истолкован как совет о "преждевременной оптимизации". Это не так.
Вот предпосылки для данной рекомендации. Память и дисковая емкость растут экспоненциально; например, с 1988 по 2004 год емкость дисков росла примерно на 112% в год (почти в 1900 раз за десятилетие). Очевидным следствием этого факта является то, что любой ваш сегодняшний код завтра может иметь дело с большими объемами данных — намного большими! Плохое (хуже линейного) асимптотическое поведение алгоритма рано или поздно поставит на колени даже самую мощную систему, просто завалив ее достаточным количеством данных.
Защита против такого будущего означает, что мы должны избежать встраивания в наши программы того, что станет западней при работе с большими файлами, большими базами данных, с большим количеством пикселей, большим количеством окон, процессов, битов, пересылаемых по каналам связи. Одним из важных факторов успеха такой защиты является то, что стандартная библиотека С++ обеспечивает гарантированную сложность операций и алгоритмов над контейнерами STL.
Здесь и надо искать точку равновесия. Очевидно, что неверно прибегать к преждевременной оптимизации путем использования менее понятных алгоритмов в ожидании больших объемов данных, которые могут никогда не материализоваться. Не менее очевидно и то, что неверно прибегать и к преждевременной пессимизации, закрывая глаза на сложность алгоритмов (О-сложность), а именно — стоимость вычислений как функцию от количества элементов данных, с которыми работает алгоритм.
Данный совет состоит из двух частей. Во-первых, даже до того, как станет известно, будут ли объемы данных достаточно велики, чтобы для конкретных вычислений возникла проблема, по умолчанию следует избегать использования алгоритмов, которые работают с пользовательскими данными (которые могут расти), но не способны к масштабированию, если только использование менее масштабируемого алгоритма не приводит к существенному повышению понятности и удобочитаемости кода (см. рекомендацию 6). Но все мы часто сталкиваемся с сюрпризами. Мы пишем десять фрагментов кода, думая, что они никогда не будут иметь дела с большими наборами данных. И это действительно оказывается так — в девяти случаях из десяти. В десятом случае мы сталкиваемся с проблемами производительности. Это не раз случалось с нами, и мы знаем, что это случалось (или случится) и с вами. Конечно, мы вносили исправления и передавали их потребителям, но лучше было бы избежать таких затруднений и выполнения лишней работы. Так что при прочих равных условиях (включая понятность и удобочитаемость) воспользуйтесь следующими советами.
Читать дальше