• Как в четверг можно добраться из Любляны в Эдинбург?
• Мне нужно посетить Милан, Любляну и Цюрих; вылетать нужно из Лондона во вторник и вернуться обратно в Лондон в пятницу. В какой последовательности мне следует посещать эти города, чтобы ни разу на протяжении поездки не пришлось совершать более одного перелета в день.
Центральной частью программы будет база данных, содержащая информацию о рейсах. Эта информация будет представлена в виде трехаргументного отношения:
расписание( Пункт1, Пункт2, Список_рейсов)
где Список_рейсов
— это список, состоящий из структурированных объектов вида:
Время_отправления / Время_прибытия / Номер_рейса
/ Список_дней_вылета
Список_дней_вылета
— это либо список дней недели, либо атом "ежедневно". Одно из предложений, входящих в расписание
могло бы быть, например, таким:
расписание( лондон, эдинбург,
[ 9:40 / 10:50 / bа4733/ ежедневно,
19:40 / 20:50 / bа4833 / [пн, вт, ср, чт, пт, сб]] ).
Время представлено в виде структурированных объектов, состоящих из двух компонент — часов и минут, объединенных оператором " :
".
Главная задача состоит в отыскании точных маршрутов между двумя заданными городами в определенные дни недели. Ее решение мы будем программировать в виде четырехаргументного отношения:
маршрут( Пункт1, Пункт2, День, Маршрут)
Здесь Маршрут
— это последовательность перелетов, удовлетворяющих следующим критериям:
(1) начальная точка маршрута находится в Пункт1
;
(2) конечная точка — в Пункт2
;
(3) все перелеты совершаются в один и тот же день недели — День
;
(4) все перелеты, входящие в Маршрут
, содержатся в определении отношения расписание
;
(5) остается достаточно времени для пересадки с рейса на рейс.
Маршрут представляется в виде списка структурированных объектов вида
Откуда - Куда : Номер_рейса : Время_отправления
Мы еще будем пользоваться следующими вспомогательными предикатами:
(1) рейс( Пункт1, Пункт2, День, N_рейса, Вр_отпр, Вр_приб)
Здесь сказано, что существует рейс N_рейса
между Пункт1
и Пункт2
в день недели День
с указанными временами отправления и прибытия.
(2) вр_отпр( Маршрут, Время)
Время
— это время отправления по маршруту Маршрут
.
(3) пересадка( Время1, Время2)
Между Время1
и Время2
должен существовать промежуток не менее 40 минут для пересадки с одного рейса на другой.
Задача нахождения маршрута напоминает моделирование недетерминированного автомата из предыдущего раздела:
• Состояния автомата соответствуют городам.
• Переход из состояния в состояние соответствует перелету из одного города в другой.
• Отношение переход
автомата соответствует отношению расписание
.
• Модель автомата находит путь в графе переходов между исходным и конечным состояниями; планировщик поездки находит маршрут между начальным н конечным пунктами поездки.
Неудивительно поэтому, что отношение маршрут
можно определить аналогично отношению допускает
, с той разницей, что теперь нет "спонтанных переходов". Существуют два случая:
(1) Прямой рейс: если существует прямой рейс между пунктами Пункт1
и Пункт2
, то весь маршрут состоит только из одного перелета:
маршрут( Пункт1, Пункт2, День, [Пункт1-Пункт2 : Nр : Отпр]) :-
рейс( Пункт1, Пункт2, День, Np, Отпр, Приб).
(2) Маршрут с пересадками: маршрут между пунктами P1
и Р2
состоит из первого перелета из P1
в некоторый промежуточный пункт Р3
и маршрута между Р3
и Р2
. Кроме того, между окончанием первого перелета и отправлением во второй необходимо оставить достаточно времени для пересадки.
маршрут( P1, Р2, День, [P1-Р3 : Nр1 : Отпр1 | Маршрут]) :-
маршрут( Р3, Р2, День, Маршрут ),
рейс( P1, Р3, День, Npl, Oтпpl, Приб1),
вр_отпр( Маршрут, Отпр2),
пересадка( Приб1, Отпр2).
Вспомогательные отношения рейс
, пересадка
и вр_отпр
запрограммировать легко; мы включили их в полный текст программы планировщика поездки на рис. 4.5. Там же приводится и пример базы данных расписания.
Наш планировщик исключительно прост и может рассматривать пути, очевидно ведущие в никуда. Тем не менее его оказывается вполне достаточно, если база данных о рейсах самолетов невелика. Для больших баз данных потребовалось бы разработать более интеллектуальный планировщик, который мог бы справиться с большим количеством путей, участвующих в перебора при нахождении нужного пути.
Читать дальше