Кроме того, быстрая сортировка наиболее изучена. Со времени выхода в свет первой статьи Хоара многие исследователи изучали быструю сортировку и сформировали значительную базу данных по теоретическому определению времени выполнения, подкрепленную эмпирическими данными. Было предложено немало улучшений базового алгоритма, позволяющих увеличить скорость работы. Некоторые из предложенных улучшений будет рассмотрены в этой главе. При таком богатстве литературных источников по алгоритму быстрой сортировки, если следовать всем рекомендациям, у вас не должно возникнуть проблем с реализацией. (В последней оптимизированной реализации алгоритма использовалось более шести различных справочных пособий по алгоритмам. Причем в одной из них была приведена "оптимизированная" быстрая сортировка, которая была написана так плохо, что при одних и тех же входных данных работала даже медленнее, чем стандартный метод TList.Sort.)
Быстрая сортировка встречается везде. Во всех версиях Delphi, за исключением версии 1, метод TList.Sort реализован на основе алгоритма быстрой сортировки. Метод TStringList.Sort во всех версиях Delphi реализован с помощью быстрой сортировки. В С++ функция qsort из стандартной библиотеки времени выполнения также реализована на базе быстрой сортировки.
Основной алгоритм быстрой сортировки, как и сортировку слиянием, можно отнести к классу "разделяй и властвуй". Он разбивает исходный список на два, а затем для выполнения сортировки рекурсивно вызывает сам себя для каждой части списка. Таким образом, особое внимание в быстрой сортировке нужно уделить процессу разделения. В разбитом списке происходит следующее: выбирается элемент, называемый базовым, относительно которого переставляются элементы в списке. Элементы, значения которых меньше, чем значение базового элемента, переносятся левее базового, а элементы, значения которых больше, чем значение базового элемента, переносятся правее базового. После этого можно сказать, что базовый элемент находится на своем месте в отсортированном списке. Затем выполняется рекурсивный вызов функции быстрой сортировки для левой и правой частей списка (относительно базового элемента). Рекурсивные вызовы прекращаются, когда список, переданный функции сортировки, будет содержать всего один элемент, а, следовательно, весь список оказывается отсортированным.
Таким образом, для выполнения быстрой сортировки необходимо знать два алгоритма более низкого уровня: как выбирать базовый элемент и как наиболее эффективно переставить элементы списка таким образом, чтобы получить два набора элементов: со значениями, меньшими, чем значение базового элемента, и со значениями, большими, чем значение базового элемента.
Начнем с описания алгоритма выбора базового элемента. В идеале следовало бы выбирать средний элемент списка. Затем при разбиении количество элементов в наборе значений, меньших значения базового элемента, будет равно количеству элементов в наборе значений, больших значения базового элемента. Другими словами, при разбиении исходный список был бы разделен на две равные половины. Вычисление среднего элемента списка (или его медианы) представляет собой достаточно сложный процесс, к тому же стандартный алгоритм его определения использует метод разбиения быстрой сортировки, который мы сейчас обсуждаем. Поэтому нам придется отказаться от определения среднего элемента списка.
Худшим случаем будет иметь место, если в качестве базового элемента мы выберем элемент с максимальным или минимальным значением. В этом случае после выполнения процесса разбиения один из результирующих списков будет пуст, а во втором будут содержаться все элементы, поскольку все они будут находиться по одну сторону от базового элемента. Конечно, заранее (по крайней мере, без просмотра списка) невозможно узнать, выбран ли элемент с минимальными или максимальным значением, но если при каждом рекурсивном вызове в качестве базового элемента будет выбираться один из граничных элементов, то для n элементов будет выполнено n уровней рекурсии. При большом количестве сортируемых элементов это может вызывать проблемы. (при реализации алгоритма быстрой сортировки особое внимание следует уделить исключению возможности зацикливания рекурсивных вызовов.)
Таким образом, после рассмотрения этих двух граничных случаев можно сказать, что желательно выбирать базовый элемент, который был бы как можно ближе к среднему элементу и как можно дальше от минимального и максимального.
Читать дальше