if (aNode^.btParent^.btChild[ctLeft] = Parent) then
aNode^.btParent^.btChild[ctLeft] := anode else
aNode^.btParent^.btChild[ctRight] := aNode;
aNode^.btChild[ctLeft] := Parent;
Parent^.btParent := aNode;
end;
{вернуть узел, ранг которого был повышен}
Result := aNode;
end;
Исходный код класса TtdRedBlackTree можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDBinTre.pas.
В этой главе мы рассмотрели бинарные деревья - важную структуру данных, которая может использоваться во многих прикладных приложениях. Мы рассмотрели стандартное бинарное дерево, а затем перешли к исследованию его сортированной разновидности - дереву бинарного поиска.
В ходе рассмотрения дерева бинарного поиска мы ознакомились с проблемой, которая может возникнуть во время вставки и удаления - проблемой вырождения дерева, - именно в это связи мы исследовали способы ее устранения. Первое решение, скошенное дерево, предоставляет хорошую возможность, несмотря на то, что при этом эффективность вставки и удаления лишь в среднем, а не всегда, описывается соотношением O(log(n)). Однако эта разновидность дерева представляет собой приемлемый компромисс между стандартным деревом бинарного поиска и таким действительно сбалансированным деревом, как красно-черное дерево.
Воспользовавшись красно-черным деревом, мы, наконец, получили полное дерево бинарного поиска, имеющее встроенные алгоритмы балансировки как для вставки, так и для удаления.
Глава 9. Очереди по приоритету и пирамидальная сортировка.
В главе 3 мы рассмотрели несколько очень простых структур данных. Одной из них была очередь. В эту структуру можно было добавлять элементы, а затем извлекать их в порядке поступления. При этом сохранение даты и времени создания записи позволяло не обращать внимания на реальную длину элемента в очереди. Вместо этого мы просто организовали элементы по порядку их поступления в связный список или массив, а затем удаляли их в порядке поступления. При этом использовались две базовые операции: "добавление элемента в очередь" (называемая еще постановкой в очередь) и "удаление самого старого элемента очереди" (или вывод из очереди).
Все это замечательно, и очередь сама по себе является важной структурой данных. Однако ей присуще ограничение, заключающееся в том, что элементы обрабатываются в порядке их поступления. Предположим, что элементы нужно обрабатывать в совершенно ином порядке. Иначе говоря, требуется очередь, для которой по-прежнему определена операция "добавления элемента", но второй операцией является не "удаление самого старого элемента", а "удаление самого большого элемента" или "удаление самого малого элемента". В этом случае упрощенный критерий упорядочения "по возрасту" желательно заменить каким-то совершенно иным критерием. Например, предположим, что элементами очереди являются задачи, которые необходимо выполнить, и требуется извлечь задачу, обладающую наивысшим приоритетом.
Фактически, упомянутый пример обусловливает название новой структуры данных, называемой очередью по приоритету. Для очереди по приоритету (priority queue) определены две базовых операции: добавление элемента (как и ранее) и извлечение элемента с наивысшим приоритетом. (Естественно, при этом предполагается, что с каждым элементом связано значение приоритета, которое легко проверить.) у читателей может возникнуть вопрос, что в данном контексте понимается под "приоритетом"? Что ж, приоритетом может быть все что угодно. В классическом понимании это численное значение, указывающее на приоритет элемента в каком-либо процессе. Примерами могут служить очереди на печать в операционных системах, очереди заданий или потоки в многопоточной среде. Если принять в качестве примера очередь печати, каждому заданию печати присваивается приоритет - значение, указывающее важность данного задания печати. Задания на печать с высоким приоритетом должны обрабатываться раньше заданий с низким приоритетом. В этом случае операционная система должна была бы завершить выполнение конкретного задания печати, обратиться к очереди печати и извлечь задание печати с наивысшим приоритетом. По мере выполнения работы в операционной системе, другие задания печати будут добавляться в очередь печати с различными приоритетами, а очередь печати обеспечит такую их организацию, чтобы при необходимости можно было определить печатное задание с наивысшим приоритетом.
Читать дальше