Множественная реакция на сигнал
#include
#include
#include
#include
#include
#include
#include
static void handler(int signo, siginfo_t* info, void* context) {
cout << "SIG = " << signo << ", TID = " << pthread_self() << endl;
}
static void endhandler(int signo) {}
// сигнал, на который реагируют потоки:
const int SIGNUM = SIGRTMIN;
sigset_t sig;
struct threcord {
int tid;
bool noblock;
};
static vector tharray; // вектор состояний потоков
void* threadfunc(void* data) {
// блокирование всех прочих сигналов:
sigset_t sigall;
sigfillset(&sigall);
SignalProcmask(0, 0, SIG_BLOCK, &sigall, NULL);
// передеспетчеризация для завершения формирования вектора
sched_yield();
tharray[(int)data].noblock =
(SignalProcmask(0, 0, SIG_UNBLOCK, &sig, NULL) != -1);
while (true) {
pause();
tharray[(int)data].noblock =
!(SignalProcmask(0, 0, SIG_BLOCK, &sig, NULL) != 1);
bool nolast = false;
for (vector::iterator i = tharray.begin();
i != tharray.end(); i++)
if (nolast = i->noblock) break;
// последовательная пересылка сигнала следующему потоку
if (nolast) kill(getpid(), SIGNUM);
// ... когда пересылать больше некому -
// переинициализация масок
else
for (vector::iterator i = tharray.begin();
i != tharray.end(); i++)
i->noblock = (SignalProcmask(0, i->tid, SIG_UNBLOCK, &sig, NULL) != -1);
}
}
int main() {
// переопределение реакции ^C в старой манере
signal(SIGINT, endhandler);
// маска блокирования-разблокирования
sigemptyset(&sig);
sigaddset(&sig, SIGNUM);
// блокировка в главном потоке приложения
sigprocmask(SIG_BLOCK, &sig, NULL);
cout << "Process " << getpid() << ", waiting for signal " << SIGNUM << endl;
// установка обработчика (для дочерних потоков)
struct sigaction act;
act.sa_mask = sig;
act.sa_sigaction = handler;
act.sa_flags = SA_SIGINFO;
if (sigaction(SIGNUM, &act, NULL) < 0) perror("set signal handler: ");
const int thrnum = 3;
for (int i = 0; i < thrnum; i++) {
threcord threc = { 0, false };
pthread_create(&threc.tid, NULL, threadfunc, (void*)i);
tharray.push_back(three);
}
pause();
// сюда мы попадаем после ^C для завершающих операций...
tharray.erase(tharray.begin(), tharray.end());
cout << "Clean vector" << endl;
}
Это приложение, в отличие от предыдущих, построено уже с использованием специфики С++, в нем используется контейнерный класс vector
из библиотеки STL (Standard Template Library). Может быть множество вариаций на подобную тему. Приведенное нами приложение (как одна из вариаций) только подтверждает, что принятая в QNX модель достаточна для описания самых неожиданных потребностей. Логика работы приложения крайне проста: получая сигнал, поток блокирует повторную реакцию на этот сигнал, после чего возбуждает дубликат полученного сигнала от своего имени.
Примечание
Показанное приложение в значительной степени искусственно и неэффективно. Мы приводим его здесь не как образец того, «как нужно делать», а только как иллюстрацию гибкости возможностей, предоставляемых в области параллельного программирования. При некоторой изобретательности можно заставить программу вести себя согласно вашим капризам, какими бы изощренными они ни оказались.
Запускаем полученное приложение:
# s10
Process 2089006, waiting for signal 41
После чего с другого терминала пошлем приложению ожидаемый им сигнал, например командой:
# kill -41 2089006
Посылаем этот сигнал несколько раз (в данном случае 3) и получаем вывод от приложения:
SIG = 41; TID = 4
SIG = 41; TID = 2
SIG = 41; TID = 3
SIG = 41; TID = 3
SIG = 41; TID = 4
SIG = 41; TID = 2
SIG = 41; TID = 2
SIG = 41; TID = 3
SIG = 41; TID = 4
^C
Clean vector
Видно, что реакция на каждый сигнал возбуждается несколько раз (по числу потоков), каждый раз выполняясь в контексте разного потока (TID). Интересно и изменение порядка активизации потоков от сигнала к сигналу, то есть потоки в очереди ожидающих «перетасовываются» при поступлении каждого сигнала.
Примечание
В приложение добавлена реакция на ^C (сигнал SIGINT
):
• начиная с некоторой сложности приложений, их завершению должна обязательно предшествовать некоторая последовательность действий; в данном случае мы условно показываем очистку вектора состояний потоков;
• реакция на SIGINT
выполнена в «ненадежной» манере в смешении с моделью очереди сигналов для SIGRTMIN
, что показывает возможность смешанного применения всех моделей в рамках одного приложения; все определяется требованиями и вопросами удобства.
Читать дальше
Конец ознакомительного отрывка
Купить книгу