Олег Цилюрик - QNX/UNIX - Анатомия параллелизма

Здесь есть возможность читать онлайн «Олег Цилюрик - QNX/UNIX - Анатомия параллелизма» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2006, ISBN: 2006, Издательство: Символ-Плюс, Жанр: Программирование, ОС и Сети, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

QNX/UNIX: Анатомия параллелизма: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «QNX/UNIX: Анатомия параллелизма»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.

QNX/UNIX: Анатомия параллелизма — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «QNX/UNIX: Анатомия параллелизма», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

}

...

if ( /* нечто */ ) {

pthread_attr_t attr;

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);

pthread_attr_setschedpolicy(&attr, SCHED_RR);

int policy;

struct sched_param param;

pthread_getschedparam(pthread_self(), &policy, &param);

attr.param.sched_priority = param.sched_priority + 2;

pthread_create(NULL, &attr, &ThreadProc, &data);

}

Здесь в точке создания порожденный поток сразу же вытесняет своего родителя и выполняет инициализацию копии области параметров, после чего возвращается к нормальной (с равными приоритетами) диспетчеризации. Этот вариант может показаться искусственно усложненным, но отлично вписывается своими побочными достоинствами в создание многопоточных GUI-приложений для графической подсистемы Photon.

Данные потока

В реальном коде часто возникает ситуация, когда одновременно исполняются несколько экземпляров потоков, использующих один и тот же код (при создании потоков указывается одна и та же функция потока). При этом некоторые данные (например, статические объекты, глобальные объекты программного файла, объявленные вне функции потока) будут представлены для различных экземпляров потока в виде единого экземпляра данных, а другие (блок параметров функции потока, локальные данные функции потока) будут представлять собой индивидуальные экземпляры для каждого потока:

class DataBlock {

DataBlock(void);

DataBlock(DataBlock&);

}

DataBlock A;

void* ThreadProc(void *data) {

static DataBlock B;

DataBlock C, D(*(DataBlock*)data);

...

delete data;

return NULL;

}

...

for(int i = 0; i < N; i++ ) {

DataBlock E;

// ... обработка и заполнение E ...

pthread_create(NULL, NULL, &ThreadProc, new DataBlock(E));

}

В этом простейшем фрагменте кода Nпотоков разделяют единые экземпляры данных Аи В: любые изменения, сделанные в данных потоком i, будут видимы потоку j, если, конечно, корректно выполнена синхронизация доступа к данным и потоки «совместными усилиями» не разрушат целостность блока данных. Другие блоки данных, Си D, представлены одним изолированным экземпляром на каждый поток, и никакие изменения, производимые потоком в своем экземпляре данных, не будут видны другим потокам.

Подобные эффекты не возникают в однопотоковых программах, а если они не учитываются и возникают спонтанно, то порождают крайне трудно выявляемые ошибки. [19] В литературе неоднократно отмечалось, что ошибки многопоточных программ часто не детерминированы (могут возникать или нет в идентичных условиях исполнения), трудно воспроизводимы и могут быть крайне трудны для локализации. Очень часто такие ошибки возникают после преобразования корректных последовательных программ в потоковые. Рассмотрим простейший фрагмент кода:

int M = 0;

void Func_2(void) {

static int С = 0;

M += 2;

C++;

M -= 2;

}

void Func_1(void) { Func_2(); }

void* ThreadProc(void *data) {

Func_1();

return NULL;

}

...

for (int i = 0; i < N; i++)

pthread_create(NULL, NULL, &ThreadProc, NULL);

Можно ли здесь утверждать, что переменная Mсохранит нулевое значение, а переменная Сдействительно является счетчиком вызовов и ее результирующее значение станет N? Ни в коей мере: после выполнения такого фрагмента в переменных может быть все что угодно. Но цепочка вызовов Func_1()->Func_2()может быть сколь угодно длинной, описание Func_2()может находиться совершенно в другом файле кода (вместе с объявлением переменной M!) и, наконец, Func_2()в нашей транскрипции может быть любой функцией из библиотек C/C++, писавшейся лет 15 назад и содержащей в своем теле статические переменные!

POSIX.1 требует, чтобы определенные в нем функции были максимально безопасными в многопоточной среде. Но переработка всех библиотек - трудоемкий и длительный процесс. API QNX (и так поступили производители многих POSIX-совместимых ОС) для потенциально небезопасных в многопоточной среде функций ввели их эквиваленты, отличающиеся суффиксом «_r», например: localtime()localtime_r(), rand()rand_r()и т.д. Принципиально небезопасна в многопоточной среде одна из самых «любимых» в UNIX функция — select().

Собственные данные потока

Описанной выше схеме общих данных приложения и локальных данных потока, достаточных для большинства «ординарных» приложений, все-таки определенно не хватает гибкости, покрывающей все потребности. Поэтому в расширениях POSIX реального времени вводится третий специфичный механизм создания и манипулирования с данными в потоке — собственные данные потока (thread-specific data). Использование собственных данных потока — самый простой и эффективный способ манипулирования данными, представленными индивидуальными экземплярами данных для каждого потока.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «QNX/UNIX: Анатомия параллелизма»

Представляем Вашему вниманию похожие книги на «QNX/UNIX: Анатомия параллелизма» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «QNX/UNIX: Анатомия параллелизма»

Обсуждение, отзывы о книге «QNX/UNIX: Анатомия параллелизма» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x