– число дней, начиная со ссылочной даты;
– отдельно месяц, год и день недели как отдельные предикторы;
– номер дня в году;
– была ли дата в пределах торговой сессии (в противоположность праздничным дням или новогодним каникулам).
В нашем примере принято следующее решение по дате:
– день недели взят вместо календарной даты, так как интенсивность торгов разная в разные дни недели;
– номер часа взят вместо часа (совпадает со временем), так как интенсивность торгов разная в разное время суток.
«Корректная» разработка предиктора зависит от нескольких факторов. Во-первых, некоторые кодировки могут быть оптимальными для некоторых моделей и плохими для других. Например, основанные на дереве модели разделят данные на два или больше стеллажей. Как будет показано позднее, некоторые модели содержат встроенный выбор предикторов , означающий, что модель будет включать только предикторы, которые помогут максимизировать точность. В этих случаях может привередничать модель, какое представление данных является лучшим.
Отношение между предиктором и целевой переменной – следующий фактор. Существует, к примеру, логистическая модель, которая дает оценку вклада каждого предиктора в вычисление класса (модели классификации). Тем не менее, остаются крайне важным содержательное понимание связи между предикторами и целевой переменной.
Как со многими вопросами статистики, ответ на вопрос «какие методы разработки предикторов являются лучшими?» выглядит как: это зависит . Определенно, это зависит от используемой модели и истинного отношения с целевой переменно.
2.1. Преобразование отдельных предикторов
Преобразования предикторов могут быть необходимы по нескольким причинам. У некоторых методов моделирования могут быть строгие требования, такие как необходимость общего масштаба предикторов. В других случаях создание хорошей модели может быть затруднено определенными характеристиками данных, например, выбросами. В книге обсуждается центрирование, масштабирование и преобразования асимметрии.
2.1.1. Центрирование и масштабирование
Центрирование и масштабирование предикторов является наиболее понятным преобразованием данных. Для центрирования предиктора среднее значение предиктора вычитается из всех значений. В результате центрирования у предиктора средняя равна нулю. Точно так же, для совместимости масштабов данных, каждое значение предиктора делится на его стандартное отклонение. Масштабирование данных приводит к значениям с отклонениями в размере одного стандартного отклонения. Эти манипуляции обычно используются для улучшения числовой устойчивости некоторых вычислений. Некоторые модели, к примеру PLS, извлекают выгоду из предикторов, имеющих общий масштаб. Единственным минусом этих преобразований является потеря интерпретируемости отдельного значения, так как данные больше не находятся в исходных масштабах.
2.1.2. Преобразования для исключения асимметрии
Другая общая причина преобразований состоит в удалении исходной асимметрии – скоса. Распределение без скоса – это то, что примерно симметрично. Это означает, что уменьшение вероятности по обе стороны от среднего распределения примерно равно. У распределений с правым скосом есть большое количество точек на левой стороне распределения (меньшее значение), чем на правой стороне (большее значение).
Общее правило большого пальца в рассмотрении скошенных данных состоит в том, что если максимальное значение превосходит минимальное значение более 20 раз, то имеется значимая асимметрия. Кроме того, статистика асимметрии может использоваться в качестве диагностики. Если распределение предиктора будет примерно симметрично, то значение асимметрии будет близко к нулю. Поскольку распределение становится более отклоненным справа, то статистика асимметрии становится больше. Точно так же, поскольку распределение становится более отклоненным влево, то значение становится отрицательным.
Логарифмирование может помочь удалить скос.
Вне рамок Rattle , но из инструментов R, имеется преобразование Box-Cox (1964), которые предлагают семейство адаптивных преобразований. Эту процедуру можно применить вне Rattle к каждому предиктору, имеющими значения, больше нуля.
2.2. Преобразование групп предикторов
Эти преобразования действуют на группы предикторов, обычно все рассматриваемого множества. Наиболее значимые методы направлены на решение проблем выбросов и уменьшения размерность данных.
Читать дальше