Александр Фоменко - Предсказываем тренды. С Rattle и R в мир моделей классификации

Здесь есть возможность читать онлайн «Александр Фоменко - Предсказываем тренды. С Rattle и R в мир моделей классификации» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Прочая околокомпьтерная литература, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Предсказываем тренды. С Rattle и R в мир моделей классификации: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Предсказываем тренды. С Rattle и R в мир моделей классификации»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является практическим руководством по обучению моделей предсказаниям трендов на рынке Форекс. Берем исторические значения исходных данных – котировок, индикаторов, макроэкономических данных, и на них учим модель предсказывать «лонги-шорты».Данная книга является практическим применением пакета Rattle к рынку Форекс и терминалу МТ4 c комментариями идеологии моделей классификации и их оценки.Книга доступна новичкам, а также полезна опытным трейдерам в терминале МТ4.

Предсказываем тренды. С Rattle и R в мир моделей классификации — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Предсказываем тренды. С Rattle и R в мир моделей классификации», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Категориальные ( categorical ) данные, известные также как номинальные атрибуты, качественные данные, факторы имеют значения, которые не имеют масштаба. «Лонг/шорт», день недели являются примерами таких данных. «Лонг» не больше и не меньше «шорта». Категориальная переменная, которая имеет два значения, как у нас – (лонг, шорт) называют бинарной (двоичной) переменной. Категориальная переменная «день недели» имеет семь значений.

Категориальные переменные могут быть упорядочены, как в нашем примере Weekdays (дни недели). Понедельник не больше и не меньше вторника, но может быть важным для модели, чтобы ей было известно, что вторник всегда следует после понедельника.

Построение модели, обучение модели, тренировка модели или оценка параметров – все это относится к процессу определению параметров в уравнении модели.

1.4. Используемые наборы данных

Далее по тексту будут использоваться следующие наборы данных:

audit набор данных, поставляемый в составе дистрибутива Rattle .

weather набор данных, поставляемый в составе дистрибутива Rattle .

kot60_110101_131231_UE. txt

На основе регрессионной модели попытаемся сделать «типичный мультивалютник»:

– целевая переменная – EURUSD;

– предикторы – GBPUSD, USDCHF, USDJPY, EURGBP, USDCAD.

zz_1_5.RData

Для классификационной модели создан искусственный разнообразный набор предикторов, которые должны продемонстрировать возможности моделей по предсказанию трендов:

– целевая переменная (три варианта) – тренд;

– предикторы – день недели, час дня, EURUSD , приращение EURUSD , macd, macd (13), macd (26), macd (39 ), приращение macd (13), macd (26), macd (39)), RSI (14), RSI (21), RSI (28), стеллажирование на 8 уровней (RSI (14), RSI (21), RSI (28)), MA (13), MA (26), MA (52) , приращение ( MA (13), MA (26), MA (52)).

Описание каждого набора данных приведено в Приложении В. Для zz_1_5.RData приведен скрипт на R, который формирует этот набор из набора kot60_110101_131231_UE. txt

2. Предварительная обработка данных

Методы предварительной обработки данных обычно состоят в добавлении, удалении или преобразовании данных обучения. Хотя мы интересуемся методами моделирования, подготовка данных может оказаться решающей для предсказательной возможности модели. У различных моделей есть разная чувствительность к типу предикторов в модели; как предикторы входят в модель также важно. Преобразования данных для уменьшения воздействия асимметрии данных или выбросов, могут привести к зн ачимым улучшениям результативности. Выделение предикторов является одним из эмпирических методов для создания фиктивных переменных, которые являются комбинациями многих предикторов. Также могут быть эффективными дополнительные, более простые стратегии, такие как удаление предикторов.

Потребность в предварительной обработке данных определяется типом используемой модели. Некоторые алгоритмы, такие как основанные на моделях деревьев, нечувствительны к характеристикам данных предиктора. Другие, как линейная регрессия, не являются таковыми. В этой главе обсужден целый ряд возможных методологий.

Эта глава обрисовывает в общих чертах подходы к обработке данных без учителя : целевая переменная не рассматривается методами предварительной обработки. В других главах обсуждаются методы с учителем , в которых используется целевая переменная для предварительной обработки данных. Например, модели частных наименьших квадратов (PLS) – по существу является версией с учителем анализа главных компонентов (PCA). Мы также описываем стратегии удаления предикторов, не рассматривая, как переменные могли бы быть связаны с целевой переменной.

То, как предикторы закодированы, может оказать значительное влияние на результативность модели. Например, использование комбинаций предикторов может иногда быть более эффективным, чем использование отдельного значения. Отношение двух предикторов может быть более эффективным, чем использование двух независимых предикторов. Часто больше всего эффективное кодирование данных возникает из понимания разработчиком моделируемой проблемы, и таким образом, не получено из какого-либо математического метода.

Обычно есть несколько различных методов для кодирования конкретного предиктора. В качестве примера приведем представление даты, которая может быть представлена многими способами:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Предсказываем тренды. С Rattle и R в мир моделей классификации»

Представляем Вашему вниманию похожие книги на «Предсказываем тренды. С Rattle и R в мир моделей классификации» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Александр Фоменко
libcat.ru: книга без обложки
Александр Розов
Александр Лопатин - Маленькая дверь в новый мир
Александр Лопатин
Отзывы о книге «Предсказываем тренды. С Rattle и R в мир моделей классификации»

Обсуждение, отзывы о книге «Предсказываем тренды. С Rattle и R в мир моделей классификации» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x