Масштабы работы с большими данными выйдут далеко за рамки привычного для нас понимания. Так, корреляция, определенная компанией Google между несколькими условиями поиска и гриппом, стала результатом проверки 450 миллионов математических моделей. С другой стороны, Синтия Рудин первоначально разработала 106 прогностических факторов того, что канализационный люк может загореться, и сумела объяснить менеджерам компании Con Edison, почему ее программа выстроила места проверки именно в таком приоритетном порядке. «Объясняемость», как говорят в кругах исследования искусственного интеллекта, имеет большое значение для нас, смертных, которые, как правило, хотят знать не только факты, но и их причину. А что если бы вместо 106 прогностических факторов система автоматически создала 601, подавляющее большинство из которых имеют очень низкий вес, но вместе взятые повышают точность модели? Основа для любого прогноза была бы невообразимо сложной. Что тогда Синтия сказала бы руководителям, чтобы убедить их перераспределить свой скудный бюджет?
В таких случаях мы видим риск того, что прогнозы больших данных, а также алгоритмы и наборы данных, стоящие за ними, станут «черными ящиками», которые не дают ни малейшей прозрачности, подотчетности, прослеживаемости или уверенности. Для того чтобы предотвратить это, необходимы отслеживание и прозрачность больших данных, а также новые виды специальных знаний и учреждения, которые бы ими занимались. Эти новые игроки окажут поддержку в многочисленных областях, где общество должно внимательно изучить прогнозы и дать возможность пострадавшим требовать возмещения.
В обществе такое происходило и раньше, когда при резком увеличении сложности и специализации определенной области возникала острая необходимость в специалистах для управления новыми техническими средствами. Профессии, связанные с юриспруденцией, медициной, бухгалтерским учетом и инженерией, подверглись таким преобразованиям более ста лет назад. Не так давно появились консультанты по компьютерной безопасности и конфиденциальности. Они следят за тем, чтобы деятельность компании соответствовала передовой практике, определяемой такими органами, как Международная организация по стандартизации (созданная ввиду возникшей необходимости в разработке правил в этой области).
В эпоху больших данных потребуются люди, которые взяли бы на себя эту роль. Назовем их алгоритмистами. Они могли бы выступать как представители независимых органов, которые работают вне организаций, и как специалисты самих организаций, аналогично тому как компании нанимают и штатных бухгалтеров, и внешних аудиторов, которые проверяют их работу.
Новая профессия — алгоритмист
Новые профессионалы должны быть специалистами в области компьютерных наук, математики и статистики. Выступали бы они в качестве инстанций, контролирующих анализ и прогнозы больших данных. Алгоритмисты давали бы клятву в беспристрастности и конфиденциальности, как это делают бухгалтеры и другие специалисты в наше время. Они могли бы оценивать выбор источников данных, аналитических средств и средств прогнозирования (в том числе алгоритмов и моделей), а также интерпретацию результатов. В случае возникновения спора алгоритмисты получали бы доступ к соответствующим алгоритмам, статистическим подходам и наборам данных, которые подготовили данное решение.
Если бы в Министерстве внутренней безопасности США в 2004 году был штатный алгоритмист, он смог бы заблаговременно выявить ошибку, закравшуюся в черный список преступников, в который попал сенатор от штата Массачусетс Тед Кеннеди. Вспомним недавние инциденты, где пригодились бы алгоритмисты. В Японии, Франции, Германии и Италии появились претензии от людей в том, что их позорила функция «автозаполнения» поисковой системы Google, которая выдает список наиболее распространенных условий запроса, связанных с их именем. Эта функция в значительной степени зависит от частоты предыдущих поисков: условия ранжируются в соответствии с их математической вероятностью. А кого бы не возмутило, если бы рядом с его именем отобразилось слово «зэк» или «проститутка», когда кто-то из потенциальных деловых партнеров или пассий решил поискать о нем информацию в Сети?
Мы рассматриваем алгоритмистов как рыночный подход для решения аналогичных проблем, который может оставить позади более навязчивые формы регулирования. Алгоритмисты удовлетворили бы потребность в обработке нового наплыва финансовой информации — так в начале ХХ века появились бухгалтеры и аудиторы. Обычным людям было трудно разобраться в обрушившемся на них потоке цифр. Возникла необходимость в объединении специалистов в гибкие, саморегулируемые структуры для защиты интересов общества. В ответ рынок породил совершенно новый сектор конкурирующих компаний, которые предлагали услуги финансового надзора. Таким образом новому поколению профессионалов удалось укрепить уверенность общества в экономике как таковой. Большие данные могут и должны использовать преимущества аналогичного повышения уверенности. И с этой задачей успешно справились бы алгоритмисты.
Читать дальше
Конец ознакомительного отрывка
Купить книгу