Поиск корреляций находит все более широкое применение. Изучив идею использования кредитных отчетов и данных потребительского маркетинга, крупная страховая компания Aviva внедрила ее вместо анализа образцов крови и мочи для определенных заявителей. Полученная информация помогала выявлять лиц, наиболее подверженных риску развития высокого артериального давления, диабета или депрессии. Этот метод основывался на данных об образе жизни, включая сотни переменных (таких как хобби, посещаемые сайты и время, затрачиваемое на просмотр телевизора), а также смете поступлений.
Прогнозная модель компании Aviva, разработанная компанией «Делойт», по праву считалась полезной для выявления рисков для здоровья. Свое намерение внедрить аналогичные проекты подтвердили страховые компании Prudential и AIG. Преимущество подхода заключалось в том, что он позволял заявителям избежать неприятных анализов. Этот подход экономил страховым компаниям по 125 долларов с человека, в то время как стоимость самого подхода на основе данных составляла около пяти долларов. [60] Там же.
Некоторые ужаснутся, словно компании станут использовать кибердоносчиков, которые шпионят за каждым щелчком мыши. Возможно, люди подумали бы дважды, прежде чем посетить сайт экстремальных видов спорта или посмотреть комедийное шоу, прославляющее домоседов, если бы знали, что это может привести к повышению их страховых взносов. Это было бы страшным нарушением свободы взаимодействия с информацией. С другой стороны, польза системы состояла в том, что она способствовала бы увеличению количества застрахованных лиц. А это хорошо как для общества, так и для страховых компаний.
Корреляции между большими данными применялись и в американском розничном магазине сниженных цен Target, пример которого достоин подражания. Уже не первый год Target опирается на прогнозы, основанные на корреляциях между большими данными. В своем непривычно кратком отчете Чарльз Дахигг, бизнес-корреспондент New York Times, рассказал, откуда Target узнает, что женщина беременна, если она явно об этом не сообщала. Если коротко, нужно принимать в расчет все возможные данные и позволить корреляциям выявить нужные закономерности.
Знать о том, что в семье клиента ожидается пополнение, очень важно для магазинов розничной торговли, поскольку в этот переломный момент в жизни пары ее торговое поведение открыто для перемен — разведки новых магазинов и новых брендов. Розничные продавцы сети Target обратились в свой отдел аналитики, чтобы узнать, возможно ли по модели покупок определенного человека судить о том, что он ожидает пополнение.
В первую очередь отдел аналитики обратил внимание на историю покупок женщин, которые зарегистрировались в реестре Target на получение подарка к рождению ребенка. Специалисты Target заметили, что популярной покупкой среди зарегистрировавшихся женщин примерно на третьем месяце беременности был лосьон без запаха. Спустя несколько месяцев женщины, как правило, покупали пищевые добавки (магний, кальций, цинк и пр.). В итоге компания выявила около двух десятков характерных продуктов, по которым каждому клиенту можно было присвоить оценку «прогнозируемой беременности». С помощью корреляций розничным магазинам даже удавалось определять дату родов с небольшой погрешностью, и они стали отправлять соответствующие купоны на каждом этапе беременности. Такое нацеливание рекламных кампаний и впрямь соответствовало названию компании — Target (англ. цель ).
Поиск закономерностей в социальном контексте — лишь один из способов применения методов работы с большими данными. Не менее эффективны корреляции при работе с новыми типами данных, которые используются для решения повседневных задач.
В бизнесе все шире применяется метод прогностической аналитики для определения предстоящих событий. Это может быть алгоритм для выявления музыкальных хитов, который популярен в музыкальной сфере и позволяет звукозаписывающим лейблам лучше ориентироваться, на кого стоит делать ставки. Или же алгоритм предотвращения больших механических неисправностей и разрушений конструкции: все чаще на машинах, двигателях и элементах инфраструктуры, таких как мосты, размещают датчики для отслеживания получаемых данных (показателей тепла, вибрации, нагрузки, звука и пр.).
Если речь идет о поломке, она, как правило, происходит не сразу, а развивается постепенно, с течением времени. Собрав все данные, можно заметить явные признаки, предшествующие поломке: жужжание и перегрев двигателя. Система сравнивает эту модель поведения с обычной и выявляет несоответствия. Обнаружив отклонения на ранней стадии, система отправляет предупреждение. Таким образом, вы успеете заблаговременно заменить поврежденную часть на новую и предупредить проблему. Система определяет, а затем отслеживает закономерности, тем самым прогнозируя будущие события.
Читать дальше
Конец ознакомительного отрывка
Купить книгу