Olaf Kirch - Linux Network Administrator Guide, Second Edition

Здесь есть возможность читать онлайн «Olaf Kirch - Linux Network Administrator Guide, Second Edition» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2000, ISBN: 2000, Жанр: ОС и Сети, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Linux Network Administrator Guide, Second Edition: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Linux Network Administrator Guide, Second Edition»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book was written to provide a single reference for network administration in a Linux environment. Beginners and experienced users alike should find the information they need to cover nearly all important administration activities required to manage a Linux network configuration. The possible range of topics to cover is nearly limitless, so of course it has been impossible to include everything there is to say on all subjects. We've tried to cover the most important and common ones. We've found that beginners to Linux networking, even those with no prior exposure to Unix-like operating systems, have found this book good enough to help them successfully get their Linux network configurations up and running and get them ready to learn more.
There are many books and other sources of information from which you can learn any of the topics covered in this book (with the possible exception of some of the truly Linux-specific features, such as the new Linux firewall interface, which is not well documented elsewhere) in greater depth. We've provided a bibliography for you to use when you are ready to explore more.

Linux Network Administrator Guide, Second Edition — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Linux Network Administrator Guide, Second Edition», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

To:

This is a list of recipient email addresses. Multiple recipient addresses are separated by a comma.

Cc:

This is a list of email addresses that will receive "carbon copies" of the message. Multiple recipient addresses are separated by a comma.

Bcc:

This is a list of email addresses that will receive "carbon copies" of the message. The key difference between a "Cc:" and a "Bcc:" is that the addresses listed in a "Bcc:" will not appear in the header of the mail messages delivered to any recipient. It's a way of alerting recipients that you've sent copies of the message to other people without telling them who those others are. Multiple recipient addresses are separated by a comma.

Subject:

Describes the content of the mail in a few words.

Date:

Supplies the date and time the mail was sent.

Reply-To:

Specifies the address the sender wants the recipient's reply directed to. This may be useful if you have several accounts, but want to receive the bulk of mail only on the one you use most frequently. This field is optional.

Organization:

The organization that owns the machine from which the mail originates. If your machine is owned by you privately, either leave this out, or insert "private" or some complete nonsense. This field is not described by any RFC and is completely optional. Some mail programs support it directly, many don't.

Message-ID:

A string generated by the mail transport on the originating system. It uniquely identifies this message.

Received:

Every site that processes your mail (including the machines of sender and recipient) inserts such a field into the header, giving its site name, a message ID, time and date it received the message, which site it is from, and which transport software was used. These lines allow you to trace which route the message took, and you can complain to the person responsible if something went wrong.

X- anything:

No mail-related programs should complain about any header that starts with X-. It is used to implement additional features that have not yet made it into an RFC, or never will. For example, there was once a very large Linux mailing list server that allowed you to specify which channel you wanted the mail to go to by adding the string X-Mn-Key:followed by the channel name.

How Is Mail Delivered?

Generally, you will compose mail using a mailer interface like mail or mailx, or more sophisticated ones like mutt, tkrat, or pine. These programs are called mail user agents , or MUAs. If you send a mail message, the interface program will in most cases hand it to another program for delivery. This is called the mail transport agent , or MTA. On most systems the same MTA is used for both local and remote delivery and is usually invoked as /usr/sbin/sendmail, or on non-FSSTND compliant systems as /usr/lib/sendmail. On UUCP systems it is not uncommon to see mail delivery handled by two separate programs: rmail for remote mail delivery and lmail for local mail delivery.

Local delivery of mail is, of course, more than just appending the incoming message to the recipient's mailbox. Usually, the local MTA understands aliasing (setting up local recipient addresses pointing to other addresses) and forwarding (redirecting a user's mail to some other destination). Also, messages that cannot be delivered must usually be bounced , that is, returned to the sender along with some error message.

For remote delivery, the transport software used depends on the nature of the link. Mail delivered over a network using TCP/IP commonly uses Simple Mail Transfer Protocol (SMTP), which is described in RFC-821. SMTP was designed to deliver mail directly to a recipient's machine, negotiating the message transfer with the remote side's SMTP daemon. Today it is common practice for organizations to establish special hosts that accept all mail for recipients in the organization and for that host to manage appropriate delivery to the intended recipient.

Mail is usually not delivered directly in UUCP networks, but rather is forwarded to the destination host by a number of intermediate systems. To send a message over a UUCP link, the sending MTA usually executes rmail on the forwarding system using uux, and feeds it the message on standard input.

Since uux is invoked for each message separately, it may produce a considerable workload on a major mail hub, as well as clutter the UUCP spool queues with hundreds of small files taking up a disproportionate amount of disk space. [108] This is because disk space is usually allocated in blocks of 1,024 bytes. So even a message of a few dozen bytes will eat a full kilobyte. Some MTAs therefore allow you to collect several messages for a remote system in a single batch file. The batch file contains the SMTP commands that the local host would normally issue if a direct SMTP connection were used. This is called BSMTP, or batched SMTP. The batch is then fed to the rsmtp or bsmtp program on the remote system, which processes the input almost as if a normal SMTP connection has occurred.

Email Addresses

Email addresses are made up of at least two parts. One part is the name of a mail domain that will ultimately translate to either the recipient's host or some host that accepts mail on behalf of the recipient. The other part is some form of unique user identification that may be the login name of that user, the real name of that user in "Firstname.Lastname" format, or an arbitrary alias that will be translated into a user or list of users. Other mail addressing schemes, like X.400, use a more general set of "attributes" that are used to look up the recipient's host in an X.500 directory server.

How email addresses are interpreted depends greatly on what type of network you use. We'll concentrate on how TCP/IP and UUCP networks interpret email addresses.

RFC-822

Internet sites adhere to the RFC-822 standard, which requires the familiar notation of user@host.domain, for which host.domain is the host's fully qualified domain name. The character separating the two is properly called a "commercial at" sign, but it helps if you read it as "at." This notation does not specify a route to the destination host. Routing of the mail message is left to the mechanisms we'll describe shortly.

You will see a lot of RFC-822 if you run an Internet connected site. Its use extends not only to mail, but has also spilled over into other services, such as news. We discuss how RFC-822 is used for news in Chapter 20, Netnews.

Obsolete Mail Formats

In the original UUCP environment, the prevalent form was path!host!user, for which path described a sequence of hosts the message had to travel through before reaching the destination host. This construct is called the bang path notation, because an exclamation mark is colloquially called a "bang." Today, many UUCP-based networks have adopted RFC-822 and understand domain-based addresses.

Other networks have still different means of addressing. DECnet-based networks, for example, use two colons as an address separator, yielding an address of host::user. [109] When trying to reach a DECnet address from an RFC-822 environment, you can use "host::user"@relay, for which relay is the name of a known Internet-DECnet relay. The X.400 standard uses an entirely different scheme, describing a recipient by a set of attribute-value pairs, like country and organization.

Lastly, on FidoNet, each user is identified by a code like 2:320/204.9 , consisting of four numbers denoting zone (2 is for Europe), net (320 being Paris and Banlieue), node (the local hub), and point (the individual user's PC). Fidonet addresses can be mapped to RFC-822; the above, for example, would be written as Thomas.Quinot@p9.f204.n320.z2.fidonet.org. Now didn't we say domain names were easy to remember?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Linux Network Administrator Guide, Second Edition»

Представляем Вашему вниманию похожие книги на «Linux Network Administrator Guide, Second Edition» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Linux Network Administrator Guide, Second Edition»

Обсуждение, отзывы о книге «Linux Network Administrator Guide, Second Edition» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x