Andrew Tanenbaum - Distributed operating systems

Здесь есть возможность читать онлайн «Andrew Tanenbaum - Distributed operating systems» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: ОС и Сети, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Distributed operating systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Distributed operating systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

As distributed computer systems become more pervasive, so does the need for understanding how their operating systems are designed and implemented. Andrew S. Tanenbaum's Distributed Operating Systems fulfills this need. Representing a revised and greatly expanded Part II of the best-selling Modern Operating Systems, it covers the material from the original book, including communication, synchronization, processes, and file systems, and adds new material on distributed shared memory, real-time distributed systems, fault-tolerant distributed systems, and ATM networks. It also contains four detailed case studies: Amoeba, Mach, Chorus, and OSF/DCE. Tanenbaum's trademark writing provides readers with a thorough, concise treatment of distributed systems.

Distributed operating systems — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Distributed operating systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In operating systems using virtual memory, a trick is available to avoid the copy to the stub. If the kernel packet buffer happens to occupy an entire page, beginning on a page boundary, and the server stub's receive buffer also happens to be an entire page, also starting on a page boundary, the kernel can change the memory map to map the packet buffer into the server's address space, simultaneously giving the server stub's buffer to the kernel. When the server stub starts running, its buffer will contain the packet, and this will have been achieved without copying.

Whether going to all this trouble is a good idea is a close call. Again assuming that it takes 500 nsec to copy a 32-bit word, copying a 1K packet takes 128 microsec. If the memory map can be updated in less time, mapping is faster than copying, otherwise it is not. This method also requires careful buffer control, making sure that all buffers are aligned properly with respect to page boundaries. If a buffer starts at a page boundary, the user process gets to see the entire packet, including the low-level headers, something that most systems try to hide in the name of portability.

Alternatively, if the buffers are aligned so that the header is at the end of one page and the data are at the start of the next, the data can be mapped without the header. This approach is cleaner and more portable, but costs two pages per buffer: one mostly empty except for a few bytes of header at the end, and one for the data.

Finally, many packets are only a few hundred bytes, in which case it is doubtful that mapping will beat copying. Still, it is an interesting idea that is certainly worth thinking about.

Timer Management

All protocols consist of exchanging messages over some communication medium. In virtually all systems, messages can occasionally be lost, due either to noise or receiver overrun. Consequently, most protocols set a timer whenever a message is sent and an answer (reply or acknowledgement) is expected. If the reply is not forthcoming within the expected time, the timer expires and the original message is retransmitted. This process is repeated until the sender gets bored and gives up.

The amount of machine time that goes into managing the timers should not be underestimated. Setting a timer requires building a data structure specifying when the timer is to expire and what is to be done when that happens. The data structure is then inserted into a list consisting of the other pending timers. Usually, the list is kept sorted on time, with the next timeout at the head of the list and the most distant one at the end, as shown in Fig. 2-28.

When an acknowledgement or reply arrives before the timer expires, the timeout entry must be located and removed from the list. In practice, very few timers actually expire, so most of the work of entering and removing a timer from the list is wasted effort. Furthermore, timers need not be especially accurate. The timeout value chosen is usually a wild guess in the first place ("a few seconds sounds about right"). Besides, using a poor value does not affect the correctness of the protocol, only the performance. Too low a value will cause timers to expire too often, resulting in unnecessary retransmissions. Too high a value will cause a needlessly long delay in the event that a packet is actually lost.

The combination of these factors suggests that a different way of handling the timers might be more efficient. Most systems maintain a process table, with one entry containing all the information about each process in the system. While an RPC is being carried out, the kernel has a pointer to the current process table entry in a local variable. Instead of storing timeouts in a sorted linked list, each process table entry has a field for holding its timeout, if any, as shown in Fig. 2-28(b). Setting a timer for an RPC now consists of adding the length of the timeout to the current time and storing in the process table. Turning a timer off consists of merely storing a zero in the timer field. Thus the actions of setting and clearing timers are now reduced to a few machine instructions each.

Fig. 2-28.(a) Timeouts in a sorted list. (b) Timeouts in the process table.

To make this method work, periodically (say, once per second), the kernel scans the entire process table, checking each timer value against the current time. Any nonzero value that is less than or equal to the current time corresponds to an expired timer, which is then processed and reset. For a system that sends, for example, 100 packets/sec, the work of scanning the process table once per second is only a fraction of the work of searching and updating a linked list 200 times a second. Algorithms that operate by periodically making a sequential pass through a table like this are called sweep algorithms.

2.4.6. Problem Areas

Remote procedure call using the client-server model is widely used as the basis for distributed operating systems. It is a simple abstraction that makes dealing with the complexity inherent in a distributed system more manageable than pure message passing. Nevertheless, there are a few problem areas that still have to be resolved. In this section we will discuss some of them.

Ideally, RPC should be transparent. That is, the programmer should not have to know which library procedures are local and which are remote. He should also be able to write procedures without regard to whether they will be executed locally or remote. Even stricter, the introduction of RPC into a system that was previously run on a single CPU should not be accompanied by a set of new rules prohibiting constructions that were previously legal, or requiring constructions that were previously optional. Under this stringent criterion, few, if any, current distributed systems can be said to be completely transparent. Thus the holy grail of transparency will remain a research topic for the foreseeable future.

As an example, consider the problem of global variables. In single CPU systems these are legal, even for library procedures. For example, in UNIX, there is a global variable errno. After an incorrect system call, errno contains a code telling what went wrong. The existence of errno is public information, since the official UNIX standard, POSIX, requires it to be visible in one of the mandatory header files, errno.h. Thus it is not permitted for an implementation to hide it from the programmers.

Now suppose that a programmer writes two procedures that both directly access errno. One of these is run locally; the other is run remote. Since the compiler does not (and may not) know which variables and procedures are located where, no matter where errno is stored, one of the procedures will fail to access it correctly. The problem is that allowing local procedures unconstrained access to remote global variables, and vice versa, cannot be implemented, yet prohibiting this access violates the transparency principle (that programs should not have to act differently due to RPC).

A second problem is weakly-typed languages, like C. In a strongly-typed language, like Pascal, the compiler, and thus the stub procedure, knows everything there is to know about all the parameters. This knowledge allows the stub to marshal the parameters without difficulty. In C, however, it is perfectly legal to write a procedure that computes the inner product of two vectors (arrays), without specifying how large either one is. Each could be terminated by a special value known only to the calling and called procedure. Under these circumstances, it is essentially impossible for the client stub to marshal the parameters: it has no way of determining how large they are.

The usual solution is to force the programmer to define the maximum size when writing the formal definition of the server, but suppose that the programmer wants the procedure to work with any size input? He can put an arbitrary limit in the specification, say, 1 million, but that means that the client stub will have to pass 1 million elements even when the actually array size is 100 elements. Furthermore, the call will fail when the actual array is 1,000,001 elements or the total memory can only hold 200,000 elements.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Distributed operating systems»

Представляем Вашему вниманию похожие книги на «Distributed operating systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Distributed operating systems»

Обсуждение, отзывы о книге «Distributed operating systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x