С использованием данного метода задуманное число всегда может быть найдено не более чем за 10 попыток. В нашем примере потребовалось только восемь попыток,так как число делится на 4 — степень двойки. Обратите внимание, что любое нечетное число потребует 10 попыток, по одной на разряд. Максимальное число попыток можно вычислить как логарифм 1000 по основанию 2. Иначе это значение можно определить, учитывая, что 2 = 1024. Для угадывания числа между единицей и миллионом по данному методу требуется лишь 20 или менее попыток. Приведенный пример иллюстрирует алгоритм двоичного поиска, который применяется для нахождения элемента индекса.
Структура, в которой все записи заполнены, считается сбалансированной. При поиске по сбалансированному индексу с n элементами требуется выполнить сравнение лишь для log2 n элементов. Наш пример с угадыванием чисел был сбалансированным, так как в последовательности присутствуют все числа. Но даже для сильно несбалансированных структур среднее число попыток возрастает менее чем на 10 процентов. Алгоритм двоичного поиска отлично работает для большого числа элементов, но обычно не рекомендуется, если их число меньше 50.
Деревья с двоичным основанием

Описанный выше метод двоичного поиска можно представить в виде древовидной структуры. Дерево будет содержать два типа узлов: тестовые и окончательные. Каждый тестовый узел дерева проверяет один разряд числа. По тому, равен разряд 1 или 0, в качестве следующего выбирается один из двух узлов следующего уровня. Начиная с вершины дерева [ 55 ] В информатике деревья всегда растут вверх ногами. Где еще корень расположен наверху, а ветви тянутся вниз?
, первый узел проверяет первый разряд числа (самый левый). Второй слой дерева содержит два текстовых узла, один из которых выбирается, если первый разряд был равен 0, а другой — если первый разряд был равен 1. На третьем уровне имеется четыре узла, на четвертом — восемь и так далее вплоть до десятого узла, на котором расположено 512 тестовых узлов. Одиннадцатый уровень — последний для данного дерева и содержит 1024 окончательных узла. Окончательный узел содержит точное значение искомого числа.
Итак, для поиска числа мы начинаем с вершины дерева и проверяем разряды: слева направо. На каждом уровне дерева проверяется один из разрядов. После десяти проверок мы оказываемся в одном из окончательных узлов и можем точно назвать число.
Мы только что описали двоичное дерево. Оно сбалансированное, так как присутствуют все узлы. При поиске по таблице могут присутствовать не все узлы, так как в таблице присутствуют не все возможные элементы. Следовательно, и проверяются не все разряды числа, некоторые уровни могут отсутствовать. Такое дерево в отличии от двоичного дерева, где присутствуют все узлы, называется деревом с двоичным основанием (binaryradix tree).
Использование деревьев с двоичным основанием в AS/400 для реализации машинных индексов мы рассмотрим на примере рисунка 6.4. На нем показан простой файл из девяти записей, упорядоченных в порядке поступления. Каждая запись имеет несколько полей, на рисунке показаны лишь некоторые. Одно из полей — поле имени — предназначено для использования в качестве ключа. Для файла построен индекс, который также показан на рисунке. Каждая запись индекса имеет только два поля: поле ключа и логический адрес записи. Девять элементов индекса отсортированы по порядку значений ключа. В данном случае, ключи отсортированы по алфавиту, и первым элементом является Baker, а последним Wu. Поле логического адреса записи задает относительную позицию соответствующей записи в исходном файле, логическая адресация всегда начинается с 0 (для первой записи). Элемент для Baker указывает, что запись Baker является в файле седьмой.
|
Файл |
|
Индекс |
|
|
|
|
|
Адрес |
Имя |
Дата рождения |
Должность |
|
Имя |
логической записи 0 |
JONES |
082140 |
A |
|
BAKER |
006 |
SMITH |
122750 |
K |
|
BARNS |
007 |
WU |
041259 |
Z |
|
CARSON |
008 |
MARKLY |
111163 |
T |
|
JOHNSON |
005 |
PETERS |
070457 |
C |
|
JONES |
000 |
JOHNSON |
062753 |
A |
|
MARKLY |
003 |
BAKER |
031747 |
C |
|
PETERS |
004 |
BARNS |
090959 |
B |
|
SMITH |
001 |
CARSON |
013147 |
B |
|
WU |
002 |
Рисунок 6.4. Пример простого файла и индекса
Читать дальше