Другой подход состоит в уменьшении srto_max_init_timeo
до 20 с. При этом задержка до обнаружения недоступности сократится до 121 с — менее половины исходной величины. Однако и это решение является компромиссным. Если мы выберем слишком низкое значение тайм-аута, при большой сетевой задержке мы будем отправлять гораздо больше пакетов INIT, чем это требуется на самом деле.
Перейдем теперь к сценарию 2, описывающему взаимодействие двух многоинтерфейсных узлов. Одна конечная точка имеет адреса IP-A и IP-B, другая IP-X и IP-Y. Если одна из них становится недоступна, а вторая отправляет какие-то данные, последней приходится делать повторные передачи по каждому из адресов с задержкой, начинающейся с srto_min
(по умолчанию 1 с) и последовательно удваивающейся до значения srto_max
(по умолчанию 60 с). Повторные передачи будут продолжаться до тех пор, пока не будет достигнуто ограничение на их количество sasoc_asocmaxrxt
(по умолчанию 10 повторных передач).
В нашем сценарии последовательность тайм-аутов будет иметь вид 1(IP-A) + 1(IP-B) + 2(IP-A) + 2(IP-B) + 4(IP-A) + 4(IP-B) + 8(IP-A) + 8(IP-B) + 16(IP-A) + 16(IP-B), что в общей сложности составит 62 с. Параметр srto_max не влияет на работу многоинтерфейсного узла, если его значение совпадает с установленным по умолчанию, потому что ограничение на количество передач для ассоциации sasoc_asocmaxrxt
действует раньше, чем srto_max
. Опять-таки, у нас есть два параметра влияющих на длительность тайм-аутов и эффективность обнаружения отказов. Мы можем уменьшить количество попыток, изменив значение sasoc_asocmaxrxt
(по умолчанию 10), или снизить максимальное значение тайм-аута, изменив значение srto_max
(по умолчанию 60 с). Если мы сделаем srto_max
равным 10 с, время обнаружения отказа собеседника снизится на 12 с и станет равным 50 с. Альтернативой может быть уменьшение количества повторных передач до 8; при этом время обнаружения снизится до 30 с. Изложенные ранее соображения относятся и к этому сценарию: кратковременные неполадки в сети и перегрузка удаленной системы могут привести к обрыву работоспособного соединения.
Одну из множества альтернатив мы не рассматриваем в качестве рекомендуемой. Это снижение минимального тайм-аута ( srto_min
). При передаче данных через Интернет снижение этого значения приведет к неприятным последствиям: наш узел будет передавать повторные пакеты слишком часто, перегружая инфраструктуру Интернета. В частной сети снижение этого значения допустимо, но для большинства приложений в этом просто нет необходимости.
Для каждого приложения выбор конкретных значений параметров повторной передачи должен определяться несколькими факторами:
■ Насколько быстро нужно приложению обнаруживать отказы?
■ Будет ли приложение выполняться в частных сетях, где условия передачи заранее известны и меняются не так резко, как в Интернете?
■ Каковы последствия неправильного обнаружения отказа?
Только внимательно подумав над ответами на эти вопросы, программист может правильно настроить параметры тайм-аутов SCTP.
23.12. Когда SCTP оказывается предпочтительнее TCP
Изначально протокол SCTP разрабатывался для управления сигналами и реализации интернет-телефонии. Однако в процессе разработки область применения этого протокола значительно расширилась. Фактически он превратился в общецелевой транспортный протокол. SCTP поддерживает почти все функции TCP и значительно расширяет их новыми сервисами транспортного уровня. Маловероятно, чтобы сетевое приложение ничего не выиграло от перехода на SCTP. Так в каких же случаях следует использовать этот протокол? Начнем с перечисления его достоинств.
1. Протокол SCTP обеспечивает явную поддержку многоинтерфейсных узлов. Конечная точка может передавать данные по нескольким сетям для повышения надежности. Никаких особых действий, кроме перехода на SCTP, для использования новых сервисов SCTP предпринимать не требуется. Подробнее об SCTP для многоинтерфейсных узлов читайте в [117, раздел 7.4].
2. Протокол SCTP устраняет блокирование очереди. Приложение может передавать данные параллельно по нескольким потокам одной ассоциации. Потеря пакета в одном потоке не приведет к задержке передачи по другим потокам той же ассоциации (см. раздел 10.5 настоящей книги).
3. Границы сообщений уровня приложения сохраняются протоколом SCTP. Многие приложения не нуждаются в отправке потока байтов. Им удобнее работать с сообщениями. SCTP сохраняет границы сообщений и тем самым упрощает задачу программисту-разработчику, которому больше не приходится отмечать границы сообщений внутри потока байтов и писать специальные функции для реконструкции сообщений из этого потока.
Читать дальше
Конец ознакомительного отрывка
Купить книгу