Проблемы, которые остались, включают возможность точной настройки (или даже полную замену) алгоритма оценки степени интерактивности задания, который приносит много пользы, когда работает правильно, и приносит много неудобств, когда выполняет предсказания неверно. Работа над альтернативными реализациями продолжается. Когда-нибудь мы увидим новую реализацию в основном ядре.
Улучшение поведения планировщика для NUMA систем (систем с неоднородным доступом к памяти) становится все более актуальной задачей, так как количество машин на основе NUMA-платформ возрастает. Поддержка доменов планирования ( scheduler domain ) — абстракция, которая позволяет описать топологию процессов; она была включена в ядро 2.6 в одной из первых версий.
Эта глава посвящена теории планирования процессов, а также алгоритмам и специфической реализации планировщика ядра Linux. В следующей главе будет рассмотрен основной интерфейс, который предоставляется ядром для выполняющихся процессов, — системные вызовы.
Ядро операционной системы предоставляет набор интерфейсов, благодаря которым процессы, работающие в пространстве пользователя, могут взаимодействовать с системой. Эти интерфейсы предоставляют пользовательским программам доступ к аппаратному обеспечению и другим ресурсам операционной системы. Интерфейсы работают как посыльные между прикладными программами и ядром, при этом пользовательские программы выдвигают различные запросы, а ядро выполняет их (или приказывает убираться подальше). Тот факт, что такие интерфейсы существуют, а также то, что прикладные программы не имеют права непосредственно делать все, что им заблагорассудится, является ключевым моментом для обеспечения стабильности системы, а также позволяет избежать крупных беспорядков.
Системные вызовы являются прослойкой между аппаратурой и процессами, работающими в пространстве пользователя. Эта прослойка служит для трех главных целей. Во-первых, она обеспечивает абстрактный интерфейс между аппаратурой и пространством пользователя. Например, при записи или чтении данных из файла прикладным программам нет дела до типа жесткого диска, до среды, носителя информации, и даже до типа файловой системы, на которой находится файл. Во-вторых, системные вызовы гарантируют безопасность и стабильность системы. Так как ядро работает посредником между ресурсами системы и пространством пользователя, оно может принимать решение о предоставлении доступа в соответствии с правами пользователей и другими критериями. Например, это позволяет предотвратить возможность неправильного использования аппаратных ресурсов программами, воровство каких-либо ресурсов у других программ, а также возможность нанесения вреда системе. И наконец, один общий слой между пространством пользователя и остальной системой позволяет осуществить виртуальное представление процессов, как обсуждается в главе 3, "Управление процессами".
Если бы приложения имели свободный доступ ко всем ресурсам системы без помощи ядра, то было бы почти невозможно реализовать многозадачность и виртуальную память. В операционной системе Linux системные вызовы являются единственным средством, благодаря которому пользовательские программы могут связываться с ядром; они являются единственной законной точкой входа в ядро. Другие интерфейсы ядра, такие как файлы устройств или файлы на файловой системе /proc
, в конечном счете сводятся к обращению через системные вызовы.
Интересно, что в ОС Linux реализовано значительно меньше системных вызовов, чем во многих других операционных системах [23] Для аппаратной платформы x86 существует около 250 системных вызовов (для каждой аппаратной платформы разрешается определять свои уникальные системные вызовы). Хотя не для всех операционных систем опубликованы действительные системные вызовы, но по оценкам для некоторых операционных систем таких вызовов более тысячи.
.
В этой главе рассказывается о роли и реализации системных вызовов в операционной системе Linux.
API, POSIX и библиотека С
Обычно прикладные программы не разрабатываются с непосредственным использованием системных вызовов, при этом используются программные интерфейсы приложений (Application Programing Interface, API). Это является важным, так как в таком случае нет необходимости в корреляции между интерфейсами, которые используют приложения, и интерфейсами, которые предоставляет ядро. Различные API определяют набор программных интерфейсов, которые используются приложениями. Эти интерфейсы могут быть реализованы с помощью одного системного вызова, нескольких системных вызовов, а также вообще без использования системных вызовов. В действительности, может существовать один и тот же программный интерфейс приложений для различных операционных систем, в то время как реализация этих API может для разных ОС существенно отличаться.
Читать дальше