Расчет значения кванта времени, наоборот, более прост, так как значение динамического приоритета уже базируется на значении параметра nice и на интерактивности (эти показатели планировщик учитывает как наиболее важные). Поэтому продолжительность кванта времени может быть просто выражена через значение динамического приоритета. Когда создается новый процесс, порожденный и родительский процессы делят пополам оставшуюся часть кванта времени родительского процесса. Такой подход обеспечивает равнодоступность ресурсов и предотвращает возможность получения бесконечного значения кванта времени путем постоянного создания порожденных процессов. Однако после того, как квант времени задачи иссякает, это значение пересчитывается на основании динамического приоритета задачи. Функция task_timeslice()
возвращает новое значение кванта времени для данного задания. Расчет просто сводится к масштабированию значения приоритета в диапазон значений квантов времени. Чем больше значение приоритета задачи, тем большей продолжительности квант времени получит задание в текущем цикле выполнения. Максимальное значение кванта времени равно MAX_TIMESLICE
, которое по умолчанию равно 200 мс. Даже задания с самым низким приоритетом получают квант времени продолжительностью MIN_TIMESLICE
, что соответствует 10 мс. Задачи с приоритетом, используемым по умолчанию (значение параметра nice , равно 0 и отсутствует надбавка и штраф за интерактивность), получают квант времени продолжительностью 100 мс, как показано в табл. 4.1.
Таблица 4.1. Продолжительности квантов времени планировщика
Тип задания |
Значение параметра nice |
Продолжительность кванта времени |
Вновь созданное |
То же, что и у родительского процесса |
Половина от родительского процесса |
Минимальный приоритет |
+19 |
5 мс (MIN_TIMESLICE) |
Приоритет по умолчанию |
0 |
100 мс (DEF_TIMESLICE) |
Максимальный приоритет |
-20 |
800 мс (MAX_TIMESLICE) |
Для интерактивных задач планировщик оказывает дополнительную услугу: если задание достаточно интерактивно, то при исчерпании своего кванта времени оно будет помещено не в истекший массив приоритетов, а обратно в активный массив приоритетов. Следует вспомнить, что пересчет значений квантов времени производится путем перестановки активного и истекшего массивов приоритетов: активный массив становится истекшим, а истекший — активным. Такая процедура обеспечивает пересчет значений квантов времени, который масштабируется по времени как O(1) . С другой стороны, это может привести к тому, что интерактивное задание станет готовым к выполнению, но не получит возможности выполняться, так как оно "застряло" в истекшем массиве. Помещение интерактивных заданий снова в активный массив позволяет избежать такой проблемы. Следует заметить, что это задание не будет выполняться сразу же, а будет запланировано на выполнение по кругу вместе с другими заданиями, которые имеют такой же приоритет. Данную логику реализует функция scheduler_tick()
, которая вызывается обработчиком прерываний таймера (обсуждается в главе 10, "Таймеры и управление временем"), как показано ниже.
struct task_struct *task = current;
struct runqueue *rq = this_rq();
if (!--task->time_slice) {
if (!TASK_INTERACTIVE(task) || EXPIRED_STARVING(rq))
enqueue_task(task, rq->expired);
else
enqueue_task(task, rq->active);
}
Показанный код уменьшает значение кванта времени процесса и проверяет, не стало ли это значение равным нулю. Если стало, то задание является истекшим и его необходимо поместить в один из массивов. Для этого код вначале проверяет интерактивность задания с помощью макроса TASK_INTERACTIVE()
. Этот макрос на основании значения параметра nice рассчитывает, является ли задание "достаточно интерактивным". Чем меньше значение nice (чем выше приоритет), тем менее интерактивным должно быть задание. Задание со значением параметра nice , равным 19, никогда не может быть достаточно интерактивным для помещения обратно в активный массив. Наоборот, задание со значением nice , равным -20, должно очень сильно использовать процессор, чтобы его не поместили в активный массив. Задача со значением nice , используемым по умолчанию, т.е. равным нулю, должна быть достаточно интерактивной, чтобы быть помещенной обратно в активный массив, но это также отрабатывается достаточно четко. Следующий макрос, EXPIRED_STARVING()
, проверяет, нет ли в истекшем массиве процессов, особенно нуждающихся в выполнении ( starving ), когда массивы не переключались в течение достаточно долгого времени. Если массивы давно не переключались, то обратное помещение задачи в активный массив еще больше задержит переключение, что приведет к тому, что задачи в истекшем массиве еще больше будут нуждаться в выполнении. Если это не так, то задача может быть помещена обратно в активный массив. В других случаях задача помещается в истекший массив, что встречается наиболее часто.
Читать дальше