Роберт Лав - Разработка ядра Linux

Здесь есть возможность читать онлайн «Роберт Лав - Разработка ядра Linux» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: Издательский дом Вильямс, Жанр: ОС и Сети, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Разработка ядра Linux: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Разработка ядра Linux»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге детально рассмотрены основные подсистемы и функции ядер Linux серии 2.6, включая особенности построения, реализации и соответствующие программны интерфейсы. Рассмотренные вопросы включают: планирование выполнения процессов, управление временем и таймеры ядра, интерфейс системных вызовов, особенности адресации и управления памятью, страничный кэш, подсистему VFS, механизмы синхронизации, проблемы переносимости и особенности отладки. Автор книги является разработчиком основных подсистем ядра Linux. Ядро рассматривается как с теоретической, так и с прикладной точек зрения, что может привлечь читателей различными интересами и потребностями.
Книга может быть рекомендована как начинающим, так и опытным разработчикам программного обеспечения, а также в качестве дополнительных учебных материалов.

Разработка ядра Linux — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Разработка ядра Linux», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Функция schedule_timeout()

Более оптимальный метод задержки выполнения — это использование функции schedule_timeouit(). Этот вызов переводит вызывающее задание в состояние ожидания (sleep) по крайней до тех пор, пока не пройдет указанный период времени. Нет никакой гарантии, что время ожидания будет точно равно указанному значению, гарантируется только, что задержка будет не меньше указанной. Когда проходит указанный период времени, ядро возвращает задание в состояние готовности к выполнению (wake up) и помещает его в очередь выполнения. Использовать эту функцию просто.

/* установить состояние задания в значение прерываемого ожидания */

set_current_state(TASK_INTERRUPTIBLE);

/* перейти в приостановленное состояние на s секунд */

schedule_timeout(s * HZ);

Единственный параметр функции — это желаемое относительное время, выраженное в количестве импульсов системного таймера. В этом примере задание переводится в прерываемое состояние ожидания, которое будет длиться s секунд. Поскольку задание отмечено как TASK_INTERRUPTIBLE, то оно может быть возвращено к выполнению раньше времени, как только оно получит сигнал. Если не нужно, чтобы код обрабатывал сигналы, то можно использовать состояние TASK_UNINTERRUPTIBLE. Перед вызовом функции schedule_timeout()задание должно быть в одном из этих двух состояний, иначе задание в состояние ожидания переведено не будет.

Следует обратить внимание, что поскольку функция schedule_timeout()использует планировщик, то код, который ее вызывает, должен быть совместим с состоянием ожидания. Обсуждение, посвященное атомарности и переходу в состояние ожидания, приведено в главах 8 и 9. Если коротко, то эту функцию необходимо вызывать в контексте процесса и не удерживать при этом блокировку.

Функция schedule_timeout()достаточно проста. Она просто использует таймеры ядра. Рассмотрим эту функцию подробнее.

signed long schedule_timeout(signed long timeout) {

timer_t timer;

unsigned long expire;

switch (timeout) {

case MAX_SCHEDULE_TIMEOUT:

schedule();

goto out;

default:

if (timeout < 0) {

printk(KERN_ERR "schedule_timeout: wrong timeout "

"value %lx from %p\n", timeout, builtin_return_address(0));

current->state = TASK_RUNNING;

goto out;

}

}

expire = timeout + jiffies;

init_timer(&timer);

timer.expires = expire;

timer.data = (unsigned long) current;

timer.function = process_timeout;

add_timer(&timer);

schedule();

del_timer_sync(&timer);

timeout = expire - jiffies;

out:

return timeout < 0 ? 0 : timeout;

}

Эта функция создает таймер timerи устанавливает время срабатывания в значение timeoutимпульсов системного таймера в будущем. В качестве обработчика таймера устанавливается функция process_timeout(), которая вызывается, когда истекает период времени таймера. Далее таймер активизируется, и вызывается функция schedule(). Так как предполагается, что текущее задание находится в состоянии TASK_INTERRUPTIBLEили TASK_UNINTERRUPTIBLE, то планировщик не будет выполнять текущее задание, а выберет для выполнения другой процесс.

Когда интервал времени таймера истекает, то вызывается функция process_timeout(), которая имеет следующий вид.

void process_timeout(unsigned long data) {

wake_up_process((task_t*)data);

}

Эта функция устанавливает задание в состояние TASK_RUNNINGи помещает его в очередь выполнения.

Когда задание снова планируется на выполнение, то оно возвращается в функцию schedule_timeout()(сразу после вызова функции schedule()). Если задание возвращается к выполнению преждевременно, то таймер ликвидируется. После этого задание возвращается из функции ожидания по тайм-ауту.

Код оператора switch()служит для обработки специальных случаев и не является основной частью функции. Проверка на значение MAX_SCHEDULE_TIMEOUTпозволяет заданию находиться в состоянии ожидания неопределенное время. В этом случае таймер не устанавливается (поскольку нет ограничений на интервал времени ожидания), и сразу же активизируется планировщик. Если вы это применяете, то, наверное, у вас есть лучший способ вернуть задание в состояние выполнения!

Ожидание в очереди wait queue в течение интервала времени

В главе 4 рассматривалось, как контекст процесса в ядре может поместить себя в очередь ожидания для того, чтобы ждать наступления некоторого события, а затем вызвать планировщик, который выберет новое задание для выполнения. Если где-то в другом месте произойдет указанное событие, то вызывается функция wake_up()для всех заданий, которые ожидают в очереди. Эти задания возвращаются к выполнению и могут продолжать работу.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Разработка ядра Linux»

Представляем Вашему вниманию похожие книги на «Разработка ядра Linux» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Разработка ядра Linux»

Обсуждение, отзывы о книге «Разработка ядра Linux» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x