Роберт Лав - Разработка ядра Linux

Здесь есть возможность читать онлайн «Роберт Лав - Разработка ядра Linux» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: Издательский дом Вильямс, Жанр: ОС и Сети, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Разработка ядра Linux: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Разработка ядра Linux»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге детально рассмотрены основные подсистемы и функции ядер Linux серии 2.6, включая особенности построения, реализации и соответствующие программны интерфейсы. Рассмотренные вопросы включают: планирование выполнения процессов, управление временем и таймеры ядра, интерфейс системных вызовов, особенности адресации и управления памятью, страничный кэш, подсистему VFS, механизмы синхронизации, проблемы переносимости и особенности отладки. Автор книги является разработчиком основных подсистем ядра Linux. Ядро рассматривается как с теоретической, так и с прикладной точек зрения, что может привлечь читателей различными интересами и потребностями.
Книга может быть рекомендована как начинающим, так и опытным разработчикам программного обеспечения, а также в качестве дополнительных учебных материалов.

Разработка ядра Linux — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Разработка ядра Linux», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы исправить это, код ядра должен нормировать все значения переменной jiffies, которые экспортируются в пространство пользователя. Нормировка реализуется путем определения константы USER_HZ, равной значению параметра HZ, которое ожидается в пространстве пользователя. Так как для аппаратной платформы x86 значение параметра HZисторически равно 100, то значение константы USER_HZ=100. Макрос jiffies_to_clock_t()используется для нормировки значения счетчика импульсов системного таймера, выраженного в единицах HZ, в значение счетчика импульсов, выраженное в единицах USER_HZ. Используемый макрос зависит от того, кратны ли значения параметров HZи USER_HZодин другому. Если кратны, то этот макрос имеет следующий очень простой вид.

#define jiffies_to_clock_t(x) ((x) / (HZ / USER_HZ))

Если не кратны, то используется более сложный алгоритм.

Функция jiffies_64_to_clock_t()используется для конвертирования 64-битового значения переменной jiffiesиз единиц HZв единицы USER_HZ.

Эти функции используются везде, где значения данных, выраженных в единицах числа импульсов системного таймера в секунду, должны экспортироваться в пространство пользователя, как в следующем примере.

unsigned long start = jiffies;

unsigned long total_time;

/* выполнить некоторую работу ... */

total_time = jiffies - start;

printk("Это заняло %lu импульсов таймера\n",

jiffies_to_clock_t(total_time));

В пространстве пользователя передаваемое значение должно быть таким, каким оно было бы, если бы выполнялось равенство HZ=USER_HZ. Если это равенство не справедливо, то макрос выполнит нужную нормировку и все будут счастливы. Конечно, этот пример несколько нелогичный: больше смысла имело бы печатать значение времени не в импульсах системного таймера, а в секундах следующим образом.

printk("Это заняло %lu секунд\n", total time / HZ);

Аппаратные часы и таймеры

Различные аппаратные платформы предоставляют два аппаратных устройства, которые помогают вести учет времени, — это системный таймер, о котором уже было рассказано, и часы реального времени. Реализация и поведение этих устройств могут быть различными для машин разного типа, но общее их назначение и принципы работы с ними почти всегда одинаковы.

Часы реального времени

Часы реального времени (real-time clock, RTC) представляют собой энергонезависимое устройство для сохранения системного времени. Устройство RTC продолжает отслеживать время, даже когда система отключена, благодаря небольшой батарее, которая обычно находится на системной плате. Для аппаратной платформы PC устройство RTC интегрировано в КМОП-микросхему BIOS. При этом используется общая батарея и для работы устройства RTC и для сохранения установок BIOS.

При загрузке ядро считывает информацию из устройства RTC и использует ее для инициализации значения абсолютного времени, которое хранится в переменной xtime. Обычно ядро не считывает это значение снова, однако для некоторых поддерживаемых аппаратных платформ, таких как x86, значение абсолютного времени периодически записывается в устройство RTC. Тем не менее, часы реального времени важны в первую очередь на этапе загрузки системы, когда инициализируется переменная xtime.

Системный таймер

Системный таймер играет более значительную роль для отслеживания хода времени ядром. Независимо от аппаратной платформы, идея, которая лежит в основе системного таймера, одна и та же — это обеспечение механизма управления прерываниями, которые возникают периодически с постоянной частотой. Для некоторых аппаратных платформ это реализуется с помощью электронных часов, которые генерируют колебания с программируемой частотой. В других аппаратных платформах используется декрементный счетчик (decrementer), куда можно записать некоторое начальное значение, которое будет периодически, с фиксированной частотой, уменьшаться на единицу, пока значение счетчика не станет равным нулю. Когда значение счетчика становится равным нулю, генерируется прерывание. В любом случае эффект получается один и тот же.

Для аппаратной платформы x86 главный системный таймер — это программируемый интервальный таймер (programmable interval timer, PIT). Таймер PIT существует на всех машинах платформы PC. Co времен операционной системы DOS он используется для управления прерываниями. Ядро программирует таймер PIT при загрузке, для того чтобы периодически генерировать прерывание номер нуль с частотой HZ. Этот таймер— простое устройство с ограниченными возможностями, но, тем не менее, хорошо выполняющее свою работу. Другие эталоны времени для аппаратной платформы x86 включают таймер APIC (Advanced Programmable Interrupt Controller, расширенный программируемый контроллер прерываний) и счетчик отметок времени (TSC, Time Stamp Counter).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Разработка ядра Linux»

Представляем Вашему вниманию похожие книги на «Разработка ядра Linux» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Разработка ядра Linux»

Обсуждение, отзывы о книге «Разработка ядра Linux» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x