Цель этого проекта состояла в том, чтобы разработать и изготовить автономную систему парящего робота, управляемую микроконтроллером 68HC9S12. Наиболее трудным аспектом системы является проблема стабильного положения робота, которое должно постоянно поддерживаться контроллером. На рис. 7.21 показана фотография робота на базе парящей рамы. Этот проект был создан студентом старших курсов.
Рис. 7.21.Робот на базе парящей рамы
Чтобы обеспечить работоспособность проекта, мы должны сначала определить все требования к системе. При создании проекта необходимо решить ряд сложных проблем, в числе которых: создание прочной, но легкой летающей рамы, которая удовлетворяла бы летным требованиям, выбор и размещение датчиков, выбор привода пропеллеров, проектирование системы питания и решение задачи стабилизации положения.
Парящий робот должен удовлетворять следующим общим требованиям:
1. Быть автономным;
2. Иметь рабочую область размером 16×16 футов. (40,6×40,6 см);
3. Весить не больше, чем 2,5 фунта (1,14 кг);
4. Обладать собственными средствами взлета и посадки;
5. Использовать двигатели постоянного тока;
6. Поднимать до 4,5 фунтов (2,05 кг), включая собственный вес;
7. Поддерживать постоянную высоту парения;
8. Осуществлять движение во всех направлениях;
9. Избегать препятствий;
10. Иметь энергонезависимую память данных;
11. Стоить не более $500,00.
7.5.2. Системы HCS12 используемые в проекте
В этом проекте будут использоваться следующие под системы HCS12:
• Подсистема входного захвата таймера;
• Модуль АЦП;
• Подсистема ШИМ.
7.5.3. Теоретическое обсуждение
Для парящего робота была разработана простая воздушная рама, подобная существовавшему ранее покупному радиоуправляемому устройству, показанному на рис. 7.21. Она собрана из четырех стержней, скрепленных в центре рамы, имеющей форму креста. К каждому концу стержня прикреплен двигатель постоянного тока и механизм привода для пропеллера. Два соседних пропеллера вращаются во встречных направлениях, чтобы предотвратить рыскание рамы, при этом два пропеллера вращаются по часовой стрелке, а два других — против часовой стрелки. В обычных вертолетах встречное вращение обеспечивается хвостовым пропеллером.
Для управления использовалась T-плата компании ImageCraft с МК семейства HCS12 (рис. 7.22). Частота тактирования МК равна 25 МГц, резидентная Flash-память программ МК равна 256 Кб, оперативная память — 12 Кб и энергонезависимая память данных типа EEPROM — 4 Кб. Для бортовой схемы весьма желательна миниатюризация платы. Для управления двигателями постоянного тока используется встроенный модуль ШИМ. Пьезогирометрические датчики для трех осей вращения обеспечивают изменение углов тангажа, крена и рыскания для управления парящим роботом. Выходы гиродатчика поданы на вход таймера МК и используются, чтобы корректировать скорости вращения всех четырех двигателей парящего робота. В дополнение к гиродатчикам, на роботе установлены четыре инфракрасных датчика. Они обнаруживают преграды, когда робот приближается к стенкам или препятствиям. Выходы датчиков поданы на входной порт АЦП, их сигналы обеспечивают выбор алгоритма управления полетом, позволяющего избежать столкновений со стенками или препятствиями.
Рис. 7.22.Плата с МК НCS12
В качестве гиродатчиков используются три пьезогиродатчика GYA350 компании Futaba. Мы выбрали эти датчики, поскольку они специально предназначены для авиамоделей. Датчик весит 26 г и размещается в корпусе 27 мм×27 мм×20 мм. Он обеспечивает сигналы ШИМ частотой 55 Гц, при этом изменение ширины импульса указывает направление движения датчика и, следовательно, направление движения парящего робота. Этот гиродатчик может также работать в режиме поддержки заданного направления (режим heading-hold), при котором микроконтроллер может определить ширину импульса на выходе датчика летящего робота. При использовании функции входного захвата таймера, робот проверяет направление, оценивая выходные ШИМ сигналы гиродатчиков.
В дополнение к гиродатчикам робот использует для измерения расстояния четыре инфракрасных пары передатчик/приемник GP2D12 фирмы Sharp, чтобы избежать столкновения с любыми объектами. Эти датчики могут обеспечивать диапазон выходных напряжений, соответствующих расстоянию обнаружения от 10 до 80 см. Эти напряжения преобразуются в соответствующие цифровые значения с помощью модуля ATD микроконтроллера. Датчик легок и размещается в корпусе 45 мм×14 мм×20 мм.
Читать дальше