Разрядность передаваемых данных по каналу DMA должна соответствовать типу канала — 16-битный канал всегда пересылает данные словами, и расщепление их на одиночные байты невозможно.
Каждый канал может работать в одном из трех логических режимов.
♦ Режим одиночной передачи (single transfer mode) — получив подтверждение DACKx#, устройство сразу снимает сигнал запроса DRQx, а контроллер DMA организует один цикл передачи. Счетчик адреса в контроллере модифицируется, счетчик циклов декрементируется.
♦ Режим блочной передачи (block transfer mode) — получив подтверждение DACKx#, устройство сразу снимает сигнал запроса DRQx, а контроллер DMA организует последовательность циклов передачи до обнуления счетчика циклов. Если разрешена автозагрузка канала, то для пересылки следующего блока требуется повторная подача DRQx. На время передачи всего блока контроллер монопольно захватывает шину, при этом не выполняется регенерация памяти.
♦ Режим передачи по запросу (demand transfer mode) — получив подтверждение DACKx#, устройство не снимает сигнал запроса DRQxдо тех пор, пока у него есть потребность в передаче. При наличии этого сигнала контроллер DMA организует последовательность циклов передачи вплоть до обнуления счетчика циклов. Если сигнал запроса снят до обнуления счетчика, контроллер DMA отдает управление шине, а при последующем появлении этого запроса продолжит обмен с того места, на котором остановился.
ВНИМАНИЕ
Используя DMA в режимах, отличных от одиночного, следует соблюдать осторожность, чтобы длительность непрерывной передачи не превышала 15 мкс.
Стандартный контроллер DMA на шине ISA с частотой 8 МГц работает на половинной частоте и требует для одиночной передачи не менее пяти своих тактов. Длительность одиночного цикла составляет 1,125 мкс. В блочных передачах пропускная способность DMA достигает 1 Мбайт/с для 8-битных каналов и 2 Мбайт/с для 16-битных (время цикла составляет 1 мкс). На современных компьютерах контроллер DMA реализуется чипсетом системной платы; при сохранении программной совместимости с 8237А он может работать на шине гораздо быстрее. Количество тактов шины на один цикл может программироваться опциями BIOS Setup.
Все программы в IBM PC-совместимом компьютере исполняются центральным процессором, принадлежащим к семейству х86. Любое устройство для процессора представляет собой лишь набор регистров (ячеек), отображенных в пространство памяти и (или) ввода-вывода, и необязательно источник аппаратных прерываний. Современные процессоры х86, работающие в защищенном режиме, имеют довольно сложные механизмы виртуализации памяти, ввода-вывода и прерываний, из-за которых приходится различать физические и логические пространства (адреса памяти и ввода-вывода) и события (операции ввода-вывода, прерывания). Физический адрес ячейки памяти или порта ввода- вывода — это адрес, формируемый для обращения к данной ячейке на физических шинах компьютера (системной шине процессора, шине PCI, ISA). Логический адрес — это тот адрес, который формируется исполняемой программой (по замыслу программиста) для доступа к требуемой ячейке. Физическая операция ввода-вывода или обращения к памяти — это процесс (шинный цикл), во время которого генерируются электрические сигналы, обеспечивающие доступ к данной ячейке (порту). Логическая операция — это исполнение программной инструкции (команды) обращения к интересующей ячейке. Логическая операция не всегда порождает ожидаемую физическую операцию: при определенных условиях она может блокироваться средствами защиты процессора, вызывая даже принудительное завершение программы, или же эмулироваться, создавая иллюзию физического исполнения.
Безопасность в защищенном режиме базируется на 4-уровневой системе привилегий. В большинстве современных ОС ради упрощения и экономии процессорного времени используются только два крайних уровня — нулевой (supervisor), с неограниченными возможностями, и третий (user), с самыми жесткими ограничениями. Смена уровней привилегий при исполнении программы занимает много тактов процессора, но это вынужденная плата за реализацию защиты, без которой устойчивую ОС не построить. Более подробно механизмы защиты и виртуализации памяти, ввода-вывода и прерываний в процессорах х86 описаны в литературе [6, 7], здесь же изложены лишь некоторые прикладные аспекты их работы.
Читать дальше