Джон Форман - Много цифр. Анализ больших данных при помощи Excel

Здесь есть возможность читать онлайн «Джон Форман - Много цифр. Анализ больших данных при помощи Excel» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Жанр: Базы данных, Программы, foreign_comp, foreign_business, paper_work, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Много цифр. Анализ больших данных при помощи Excel: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Много цифр. Анализ больших данных при помощи Excel»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Казалось бы, термин «большие данные» понятен и доступен только специалистам. Но автор этой книги доказывает, что анализ данных можно организовать и в простом, понятном, очень эффективном и знакомом многим Excel. Причем не важно, сколько велик ваш массив данных. Техники, предложенные в этой книге, будут полезны и владельцу небольшого интернет-магазина, и аналитику крупной торговой компании. Вы перестанете бояться больших данных, научитесь видеть в них нужную вам информацию и сможете проанализировать предпочтения ваших клиентов и предложить им новые продукты, оптимизировать денежные потоки и складские запасы, другими словами, повысите эффективность работы вашей организации. Книга будет интересна маркетологам, бизнес-аналитикам и руководителям разных уровней, которым важно владеть статистикой для прогнозирования и планирования будущей деятельности компаний.

Много цифр. Анализ больших данных при помощи Excel — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Много цифр. Анализ больших данных при помощи Excel», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1. Разговор с клиентами обо всякой чепухе (о спорте, отпуске, барбекю… конечно, я не имею в виду, что жареное мясо – полная ерунда).

2. Сведение данных в Excel.

Вы можете не знать всего о школьном футболе (я определенно не знаю), но если вы усвоите эту главу, смело отправляйте второй пункт в нокаут.

Запомните: вы читаете эту книгу не затем, чтобы стать консультантом по менеджменту. Вы здесь для того, чтобы глубоко погрузиться в науку о данных. И это погружение произойдет буквально со следующей главы, которую мы начнем с небольшого неконтролируемого машинного самообучения.

2. Кластерный анализ, часть I: использование метода k-средних для сегментирования вашей клиентской базы

Я работаю в индустрии почтового маркетинга для сайта под названием MailChimp.com. Мы помогаем клиентам делать новостную рассылку для своей рекламной аудитории. Каждый раз, когда кто-нибудь называет нашу работу «почтовым вбросом», я чувствую на сердце неприятный холод.

Почему? Да потому что адреса электронной почты – больше не черные ящики, которые вы забрасываете сообщениями, будто гранатами. Нет, в почтовом маркетинге (как и в других формах онлайн-контакта, включая твиты, посты в Facebook и кампании на Pinterest) бизнес получает сведения о том, как аудитория вступает в контакт на индивидуальном уровне , с помощью отслеживания кликов, онлайн-заказов, распространения статусов в социальных сетях и т. д. Эти данные – не просто помехи. Они характеризуют вашу аудиторию. Но для непосвященного эти операции сродни премудростям греческого языка. Или эсперанто.

Как вы собираете данные об операциях с вашими клиентами (пользователями, подписчиками и т. д.) и используете ли их данные, чтобы лучше понять свою аудиторию? Когда вы имеете дело с множеством людей, трудно изучить каждого клиента в отдельности, особенно если все они по-разному связываются с вами. Даже если бы теоретически вы могли достучаться до каждого лично, на практике это вряд ли осуществимо.

Нужно взять клиентскую базу и найти золотую середину между «бомбардировкой» наобум и персонализированным маркетингом для каждого отдельного покупателя. Один из способов достичь такого баланса – использование кластеризации для сегментирования рынка ваших клиентов, чтобы вы могли обращаться к разным сегментам вашей клиентской базы с различным целевым контентом, предложениями и т. д.

Кластерный анализ – это сбор различных объектов и разделение их на группы себе подобных. Работая с этими группами – определяя, что у их членов общего, а что отличает их друг от друга – вы можете многое узнать о беспорядочном имеющемся у вас массиве данных. Это знание поможет вам принимать оптимальные решения, причем на более детальном уровне, нежели раньше.

В этом разрезе кластеризация называется разведочной добычей данных , потому что эти техники помогают «вытянуть» информацию о связях в огромных наборах данных, которые не охватишь визуально. А обнаружение связей в социальных группах полезно в любой отрасли – для рекомендаций фильмов на основе привычек целевой аудитории, для определения криминальных центров города или обоснования финансовых вложений.

Одно из моих любимых применений кластеризации – это кластеризация изображений: сваливание в кучу файлов изображений, которые «выглядят одинаково» для компьютера. К примеру, в сервисах размещения изображений типа Flickr пользователи производят кучу контента и простая навигация становится невозможной из-за большого количества фотографий. Но, используя кластерные техники, вы можете объединять похожие изображения, позволяя пользователю ориентироваться между этими группами еще до подробной сортировки.

Контролируемое или неконтролируемое машинное обучение?

В разведочной добыче данных вы, по определению, не знаете раньше времени, что же за данные вы ищете. Вы – исследователь. Вы можете четко объяснить, когда двое клиентов выглядят похожими, а когда разными, но вы не знаете лучшего способа сегментировать свою клиентскую базу. Поэтому «просьба» к компьютеру сегментировать клиентскую базу за вас называется неконтролируемым машинным обучением , потому что вы ничего не контролируете – не диктуете компьютеру, как делать его работу.

В противоположность этому процессу, существует контролируемое машинное обучение , которое появляется, как правило, когда искусственный интеллект попадает на первую полосу. Если я знаю, что хочу разделить клиентов на две группы – скажем, «скорее всего купят» и «вряд ли купят» – и снабжаю компьютер историческими примерами таких покупателей, применяя все нововведения к одной из этих групп, то это контроль.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Много цифр. Анализ больших данных при помощи Excel»

Представляем Вашему вниманию похожие книги на «Много цифр. Анализ больших данных при помощи Excel» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Тим Глинн-Джонс - Странности цифр и чисел.
Тим Глинн-Джонс
Александр Александров - Цифровой анализ имени
Александр Александров
Отзывы о книге «Много цифр. Анализ больших данных при помощи Excel»

Обсуждение, отзывы о книге «Много цифр. Анализ больших данных при помощи Excel» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x