Джон Келлехер - Наука о данных. Базовый курс

Здесь есть возможность читать онлайн «Джон Келлехер - Наука о данных. Базовый курс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Альпина Паблишер, Жанр: Базы данных, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Наука о данных. Базовый курс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Наука о данных. Базовый курс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сегодня наука о данных используется практически во всех сферах: вы видите подобранные специально для вас рекламные объявления, рекомендованные на основе ваших предпочтений фильмы и книги, ссылки на предполагаемых друзей в соцсетях, отфильтрованные письма в папке со спамом.
Книга знакомит с основами науки о данных. В ней охватываются все ключевые аспекты, начиная с истории развития сбора и анализа данных и заканчивая этическими проблемами, связанными с конфиденциальностью информации. Авторы объясняют, как работают нейронные сети и машинное обучение, приводят примеры анализа бизнес-проблем и того, как их можно решить, рассказывают о сферах, на которые наука о данных окажет наибольшее влияние в будущем.
«Наука о данных» уже переведена на японский, корейский и китайский языки.

Наука о данных. Базовый курс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Наука о данных. Базовый курс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В центре всех проектов науки о данных находятся сами данные. Однако тот факт, что организация имеет доступ к данным, не означает, что у нее есть формальное или этическое право на их использование. В большинстве юрисдикций существует антидискриминационное законодательство и законы о защите персональных данных. Специалист по данным должен знать и понимать эти правила, а также (в более широком смысле) понимать этические последствия своей работы, если хочет использовать данные на законных основаниях и надлежащим образом. Мы вернемся к этой теме в главе 7, где обсудим правовые нормы и этические вопросы, связанные с наукой о данных.

В большинстве организаций значительная часть данных поступает из баз, размещенных внутри самой организации. Но по мере роста архитектуры данных проекты начнут получать их из множества других источников, в том числе из источников больших данных. Данные в этих источниках могут существовать в различных форматах, но, как правило, представляют собой базы на основе реляционной модели, NoSQL или Hadoop. Эти данные должны быть интегрированы, очищены, преобразованы, нормализованы и т. д. Такие задачи могут называться по-разному, например: ETL (извлечение, преобразование, загрузка), подготовка, слияние, уплотнение данных и др. Результаты обработки должны храниться и управляться, как и исходные данные. Для этого также используют базы, чтобы результаты можно было легко распределить между частями организации или обеспечить им совместный доступ. Следовательно, специалист по данным должен обладать навыками взаимодействия с базами данных и обработки содержащейся в них информации.

Понятие «компьютерные науки» используется здесь для обозначения целого ряда навыков и инструментов, которые позволяют специалисту работать с большими данными и преобразовывать их в новую значимую информацию. Высокопроизводительные вычисления (HPC) предполагают агрегацию вычислительных мощностей для достижения большей производительности, чем может дать автономный компьютер. Многие проекты имеют дело с очень большими наборами данных и/или алгоритмами машинного обучения, которые требуют дорогостоящих вычислений. В таких ситуациях важно иметь навыки доступа к ресурсам HPC и их использования. Помимо HPC, мы уже упоминали о задачах сбора, очистки и интегрирования веб-данных, стоящих перед специалистом. Сюда же входит умение обрабатывать неструктурированный текст и изображения. Кроме того, неплохо, если специалист по данным способен сам написать приложение для выполнения конкретной задачи или изменить существующее, чтобы настроить его под конкретные данные и сферу деятельности. Наконец, необходима компьютерная грамотность, чтобы понимать и разрабатывать модели машинного обучения и интегрировать их в производственные, аналитические или внутренние приложения организации.

Графическое отображение данных существенно упрощает их просмотр и понимание. Визуализация применяется на всех этапах процесса. Работая с данными в табличной форме, легко пропустить такие вещи, как выбросы, тренды в распределениях или незначительные изменения данных во времени. Правильное графическое отображение выявляет эти и другие аспекты. Визуализация является важной и растущей областью науки о данных, и мы рекомендуем работы Эдварда Туфта {5} и Cтефана Фью {6} как отличное введение в ее принципы и методы.

В процессе обработки данных (от их первоначального сбора и исследования до сравнения результатов различных моделей и типов анализа) используются статистические и вероятностные методы. Машинное обучение применяет их для поиска закономерностей. Специалист по данным не обязан уметь писать алгоритмы машинного обучения, но должен понимать, как и для чего они используются, что означают сгенерированные ими результаты и на каком типе данных могут выполняться конкретные алгоритмы. Иначе говоря, воспринимать их как «серый ящик» — систему с частично известной внутренней структурой. Это позволит сконцентрироваться на прикладных аспектах и провести тестирование различных алгоритмов машинного обучения, чтобы понять, какие из них лучше всего подходят для конкретного сценария.

Наконец, важным аспектом успешности специалиста по данным является умение рассказать с их помощью историю. Это может быть история прозрения, которое дал анализ, или история о моделях, созданных в ходе проекта, которые идеально впишутся в процессы организации и благотворно повлияют на ее функционирование. В потрясающем проекте по обработке данных нет никакого смысла, если его результаты не будут использованы, но для этого надо сообщить о них коллегам, не имеющим технического образования, в такой форме, чтобы они смогли все понять.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Наука о данных. Базовый курс»

Представляем Вашему вниманию похожие книги на «Наука о данных. Базовый курс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Наука о данных. Базовый курс»

Обсуждение, отзывы о книге «Наука о данных. Базовый курс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x