Если улыбнется удача, поиск завершится на первом шаге. Иногда – по закону подлости – тратится максимальное число шагов. Но эти крайние случаи – редкость; обычно поиск занимает какое-то промежуточное время, и наш эксперимент подтвердил это. Программистов интересует время поиска в двух случаях: в худшем, и в среднем (то есть, усредненное по многим случаям).
Начнем с линейного поиска. Очевидно, что в массиве из N элементов худшее время поиска составит N шагов. Что касается среднего времени, то чутье подсказывает, что оно составит половину максимального времени, то есть N/2. Судите сами: искомое число с равной вероятностью может оказаться и ближе и дальше середины массива. Табл. 7 подтверждает эту догадку, – среднее количество шагов там составило 455, что очень близко к значению 1000/2.
Теперь рассмотрим двоичный поиск. Вначале оценим худшее время. Рассудим так. Сколько шагов поиска нужно в массиве из одного элемента? Правильно, один. А теперь вспомним, что при двоичном поиске всякий раз отбрасывается половина оставшегося массива. Значит, посчитав, сколько раз число N делится пополам для получения единицы, мы определим максимальное число шагов. Так и поступим; следите, честно ли я «распилил» нашу тысячу.
1. 1000 / 2 = 500
2. 500 / 2 = 250
3. 250 / 2 = 125
4. 125 / 2 = 62
5. 62 / 2 = 31
6. 31 / 2 = 15
7. 15 / 2 = 7
8. 7 / 2 = 3
9. 3 / 2 = 1
При делении я отбрасывал дробную часть, поскольку в двоичном алгоритме так и делается. Всего потребовалось 9 операций деления. Это значит, что максимальное число шагов поиска равно 10 (с учетом поиска в одном оставшемся элементе). Удивительная прозорливость, – ведь наш эксперимент (табл. 7) показал то же самое!
Теперь оценим среднее время двоичного поиска. Думаете, что оно составит 10/2 = 5 шагов? Как бы ни так! Дело в том, что любой алгоритм поиска в среднем исследует половину массива. Двоичный поиск отбрасывает половину массива на первом же шаге. А это значит, что в среднем число шагов будет всего лишь на единицу меньше худшего, то есть 9. Смотрим в табл. 7, – точно! Наша догадка подтвердилась! Таким образом, двоичный поиск не только быстрее линейного, но и более предсказуем: его худшее время почти не отличается от среднего.
Логарифмы? Это просто!
Разобравшись с тысячей элементов, оценим трудоемкость двоичного поиска при других размерах массива. Метод оценки остается тем же: делим размер массива пополам до получения единицы.
Для таких вычислений математики придумали особую функцию – логарифм (не путайте её с рифмой, ритмом и алгоритмом!). Логарифмы бывают разные: десятичные, натуральные и прочие. Нам интересен двоичный логарифм, который по-научному называется так: «логарифм числа N по основанию два». Математики записывают его следующим образом:
Log 2N
Связь между числом N и его двоичным логарифмом легко проследить на следующих примерах. Слева представлено разложение на множители нескольких чисел, а справа – двоичные логарифмы этих же чисел.
4 = 2 • 2 Log 24 = 2
16 = 2 • 2 • 2 • 2 Log 216 = 4
64 = 2 • 2 • 2 • 2 • 2 • 2 Log 264 = 6
Итак, двоичный логарифм числа равен количеству двоек (ой, нехорошее слово!), перемножаемых для получения этого числа. Например, для получения числа 8 надо перемножить три двойки, и его логарифм равен трем. Кстати, для получения единицы из восьмерки, её тоже «пилят» пополам трижды. Значит, оба способа вычисления логарифма – через умножение, и через деление – равноценны.
Если вы завтра же не забросите программирование, то табл. 8 с логарифмами нескольких чисел ещё пригодится вам.
Табл. 8 – двоичные логарифмы некоторых чисел
N |
Log 2N |
N |
Log 2N |
N |
Log 2N |
N |
Log 2N |
2 |
1 |
32 |
5 |
512 |
9 |
8192 |
13 |
4 |
2 |
64 |
6 |
1024 |
10 |
16384 |
14 |
8 |
3 |
128 |
7 |
2048 |
11 |
32768 |
15 |
16 |
4 |
256 |
8 |
4096 |
12 |
65 536 |
16 |
По таблице можно оценить как среднее, так и худшее время двоичного поиска: среднее время равно двоичному логарифму от размера массива, а худшее – на единицу больше.
А как определить логарифмы других чисел, например, числа 50? Поскольку оно лежит между 32 и 64, его логарифм должен быть где-то между 5 и 6? Так оно и есть: логарифм 50 равен приблизительно 5,64 (это я на калькуляторе посчитал). Но, поскольку мы применяем логарифмы для подсчета шагов поиска, то погрешностью в доли шага можно пренебречь. К чему мелочиться? Будем считать, что логарифм числа 50 тоже равен 6. Мало того, назначим это значение логарифма всем числам в промежутке от 33 до 64.
Читать дальше