Но даже после обучения мы обманываемся. 5 % годовых удвоят капитал не за 20 лет, а за 14. А 20 % годовых – быстрее, чем за 4 года. Так как у нас курс о финансах, я вам раскрою секретный способ быстро узнать, какой срок потребуется на удвоение вашего капитала. Надо 72 поделить на ожидаемую доходность. Если доходность 6 %, надо 72 поделить на 6, и мы получим 12, то есть при дохе в 6 % капитал удвоится за 12 лет. Для более точного результата надо брать 69, но 72 удобнее делить на разные числа. Да и, кстати, с 14 % инфляцией за 5 лет мы теряем половину капитала. Ну или зарплаты, если её пять лет не повышают.
Так и вероятность совпадения дней рождения двух человек в любой день года ( 1/ 365= 0,27 %), умноженная на число человек в группе из 23, даёт лишь 23/ 365= = 6,3 %. Это рассуждение неверно, так как число возможных пар (а их целых 253) значительно превышает число человек в группе.
Дело в том, что люди эгоистичны. Мы часто не думаем об окружающих. И правда, чего о них думать? В комнате, где находятся 23 человека, вы наверняка думаете о том, что именно ваш день рождения должен совпасть с чьим-то из остальных. Но вы вряд ли подумаете о том, что ещё есть 230 сравнений между другими участниками эксперимента. Вам даже не пришло в голову, что сравнений, которые вас не касаются, в 10 раз больше. И вопрос о том, совпадут ли дни рождения у кого-либо, подменился в мозгу на вопрос о том, совпадут ли дни рождения у выбранного человека с кем-либо другим из группы. В этом случае вероятность совпадения, конечно, заметно ниже.
Вроде бы нетрудно перечислить все сочетания и проверить, но есть сложность: может же оказаться, что будет 2, 3 или все 23 совпадения. Этот вопрос похож на другой: какова вероятность выбросить хотя бы одну решку за 23 броска? Вариантов много: решка на первый раз, на третий, или на пятый и десятый, или на второй и двадцать второй. Как решить такую задачу? Перевернуть!
Вместо того чтобы считать каждый способ выбросить решку, мы посчитаем вероятность выпадения неудачного сценария, когда выпадают только орлы. Вероятность этого – 1/ 2в 23-й степени, очень небольшая. Но важно понять схему: если существует, например, всего 1 % вероятность выбросить все орлы, будет 99 % шанс того, что выпадет хотя бы одна решка. Мы не знаем – одна, две, десять, или пятнадцать, или все 23. Но если мы вычтем вероятность неподходящего нам сценария из единицы, у нас как раз останется вероятность нужного нам сценария.
Этот же принцип можно применить и к задаче о днях рождения. Вместо того чтобы искать вероятность совпадения, гораздо проще найти вероятность того, что все родились в разные дни. Потом мы вычтем эту цифру из единицы и получим вероятность того, что есть хотя бы одно совпадение – хотя и не будем знать, сколько именно их будет, но нам это и не требуется. В нашем случае надо умножить 364/ 365на 363/ 365, продолжить 22 раза и вычесть произведение из единицы. Получится 50,73 %, то есть больше половины.
Кстати, для шестидесяти и более человек вероятность такого совпадения превышает 99 %, хотя (надеюсь, это очевидно) 100 % она достигает, только когда в группе будет не менее 367 человек – с учётом високосных лет.
Пожалуй, с вычислениями пока всё. Можно расслабиться.
Глава 12
Рациональность против страха и ненависти
Любой рынок – это прежде всего базар. Он думает как толпа, ведёт себя как толпа, живёт как толпа. Поэтому, чтобы понять, как работает рынок, нужно понять, как мыслит толпа.
Что интересно, способность осознать, как мыслит кто-то другой, доступна только людям. Другие животные на это не способны. Даже котики. Рекомендую прикольное видео на ted.com – его автор Ребекка Сакс провела массу исследований на этот счёт. Выясняется, что способность допускать собственные мысли у другого человека появляется довольно рано: в пять-семь лет. Ребёнок уже может представить, что думает тот или иной человек в модельной ситуации. И очевидно, что с годами эта способность улучшается.
Но, увы, не у всех.
12.1. Понятие о чужой рациональности
Студентам я каждый раз предлагаю одну остроумную игру, называется «угадай мысли соседей». От участников требуется угадать две трети от среднего числа, загаданного всеми игроками в комнате (в диапазоне от 0 до 100). Все пишут на бумажке числа, мы их складываем, делим на количество участников и берём две трети от среднего. Побеждает тот, кто написал на своей бумажке наиболее близкое к найденному число. Что интересно – я отчитал несколько курсов по финансовым рынкам, каждый раз провожу эту игру среди студентов и каждый раз выигрываю.
Читать дальше
Конец ознакомительного отрывка
Купить книгу