Суть в том, что принимать очень плохие решения можно и без использования данных или аналитики. Организацию не должно парализовать вследствие опасений, что ее сотрудники могут поступить неправильно, если дать им больше свободы в доступе к данным и их анализе (разумеется, в рамках своих навыков и опыта). Пользователи способны совершать ошибки независимо от уровня доступа к данным. Многие ИТ-службы с трудом воспринимают необходимость таких перемен. Тем не менее небольшие изменения в подходе организации к использованию данных и аналитики могут принести крупные дивиденды.
Предоставьте свободу выбора, а не создавайте ограничения
Позвольте пользователям свободно исследовать данные и экспериментировать с новой аналитикой. Не все, но многие действия будут успешными. Произведите изменения в корпоративной культуре, отказавшись от контроля над данными в пользу свободы действий, и вы увидите, как положительно отреагируют на это пользователи.
Обеспечьте грамотное планирование
В седьмой главе мы говорили о необходимости избегать ускоренных методов при определении задач и планировании анализа. Несмотря на то что это не самые сложные виды деятельности, они требуют времени и сил, и потому можно легко поддаться искушению сократить или полностью пропустить эти два этапа. К счастью, они включены во все стандартные схемы аналитических процессов. Для того чтобы преуспеть с операционной аналитикой, организациям требуется утвердить культуру, в которой надлежащее определение проблем и планирование не только поощряются, но и предусматриваются. Если потратить вначале чуть больше времени, чтобы все правильно распланировать, то можно будет сэкономить массу времени впоследствии.
Гораздо лучше начать рассчитанный на месяц проект на день позже, чтобы более тщательно все продумать, чем потерять несколько дней или недель в процессе его реализации из-за того, что оставшийся непродуманным вопрос вызвал серьезную проблему. Чтобы не погрязнуть на месяцы в бюрократической волоките, не нужно составлять 100-страничный подробный план проекта, который потребует утверждения у 20 человек. Соберите компетентных исполнителей, чтобы они обсудили, какая и для чего понадобится аналитика и каким должен быть поэтапный план действий.
Даже когда поджимают сроки, надо найти время сесть, перевести дыхание и все спокойно обдумать. Если каждый возьмет это себе за привычку, дела быстрее пойдут на лад. Однако во многих организациях принято в периоды кризисов максимально сокращать этап планирования, чтобы как можно быстрее приступить к работе. Если каждый занят делом, это хорошо, не так ли? Не совсем. При таком подходе произвольная деятельность и видимость прогресса ставятся выше, чем достижение требуемых результатов.
В то время как текущую деятельность осуществляют в основном отдельные люди, организация может в своих пределах установить правила и породить ожидания, способствующие успеху. В этом разделе мы обсудим три конкретных способа повысить вероятность того, что организация добьется успеха во внедрении и эффективном использовании операционной аналитики.
Организация всегда должна искать новые способы обнаружения нежданных ценностей в данных и новые способы применения аналитики. В 11-й главе моей книги «Укрощение больших данных» я рассказываю о том, как одно открытие часто ведет к другому, совершенно непредвиденному, но зависящему из первого. По мере того как организация будет увеличивать способы использования данных и разрабатывать всё новые аналитические процессы, она может обнаружить новые возможности, которые на момент начала работы даже не были в зоне видимости. Но если не пытаться выйти за рамки первоначальной идеи, то невозможно будет определить последующие неожиданные возможности, а они могут оказаться более ценными.
Позвольте мне привести потрясающий пример применения этого принципа к большим данным и аналитическому пространству. У меня состоялся очень интересный разговор с Энтони Голдблумом, генеральным директором компании Kaggle {90}. Она начинала и ныне продолжает действовать как конкурсный веб-сайт, который предоставляет компаниям возможность разместить требующую решения задачу вместе с набором данных, а затем позволяет любому пользователю попробовать свои силы в решении этой задачи. Предложивший лучшую модель (например, для прогнозирования заболевания) выигрывает конкурс, а иногда и денежный приз. Со временем Kaggle провела много конкурсов и собрала базу данных о более чем 100 000 конкурсантах. Все они были хорошо подкованы в аналитике и сильно увлечены ею.
Читать дальше
Конец ознакомительного отрывка
Купить книгу