Пределы и возможности прогнозирования
Экономист – это специалист, который назавтра узнает, почему не произошло то, что он предсказывал вчера.
Эрл Уилсон
Почему вы никогда не увидите заголовок «Экстрасенс выиграл в лотерею»?
Джей Лено
Все из перечисленных в предыдущем разделе достижений стали возможны благодаря прогнозированию, которое в свою очередь является результатом машинного обучения. Между всеми этими разнообразными примерами и научной фантастикой есть одно ключевое различие: они не вымышлены. И эти примеры – лишь скромный срез существующей ныне реальности. Можно с уверенностью сказать, что сила прогнозирования отныне всегда пребудет с нами.
Но не является ли такое утверждение чересчур смелым? В свое время датский физик Нильс Бор сказал: «Очень трудно сделать точный прогноз, особенно о будущем». В конце концов, возможно ли прогнозирование в принципе? Будущее покрыто мраком неизвестности, и неопределенность – единственное, в чем мы можем быть уверены.
Позвольте же мне немного рассеять перед вами туман в этой области. В принципе, точное прогнозирование невозможно. Даже погода прогнозируется всего лишь с 50 %-ной точностью, а предсказать поведение людей, будь то пациентов, клиентов или преступников, ничуть не проще.
Но есть и хорошая новость! Прогноз не должен быть точным на 100 %, чтобы представлять собой большую ценность. Например, одним из самых простых и эффективных применений технологии прогнозирования в коммерческой области является выбор целевой группы для прямой почтовой рассылки рекламных материалов. Если маркетологи могут выявить определенную группу людей, которые, скажем, отреагируют на эти материалы положительно с вероятностью в три раза большей, чем средний потребитель, компания может существенно сэкономить, удалив «не реагирующих» людей из списка рассылки. А эти люди, в свою очередь, выиграют оттого, что получат по почте меньше макулатуры.
Таким образом, бизнес уже давно использует эту игру с цифрами для массового маркетинга, деликатно, но весомо склоняя чащу весов на свою сторону, – и делает это без высокоточных прогнозов. На самом деле, чтобы прогнозирование имело практическую ценность, довольно и низкой точности. Если в среднем ответная маркетинговая реакция составляет 1 %, то в выделенной группе доля потенциальных покупателей увеличивается до 3 %. В данном случае мы не можем с уверенностью предсказать, отреагирует или нет каждый отдельно взятый адресат на рекламную рассылку. Но стоимость создается благодаря выявлению группы людей, которые – в совокупности – склонны вести себя определенным образом.
Это демонстрирует в общих чертах то, что я называю эффектом прогнозирования. Прогнозирование, даже не отличающееся высокой точностью, всегда лучше создает реальную стоимость, чем чистые догадки. Гораздо лучше иметь хотя бы смутное представление о том, что произойдет в будущем, чем пребывать в полной неизвестности.
Эффект прогнозирования: малым достигается многое.
Это первый из пяти эффектов, о которых рассказывается в этой книге. Вероятно, вы уже слышали об эффекте бабочки, эффекте Доплера и эффекте плацебо. Оставайтесь с нами, и вы узнаете также об эффекте данных, эффекте индукции, эффекте ансамбля и эффекте воздействия . Рассказ о каждом из них включает любопытные сведения из области науки и технологий: интуитивный взгляд, раскрывающий перед вами, как это работает и почему позволяет достигать успешных результатов.
Люди… действуют на основе своих убеждений и предубеждений. Если вы сможете устранить то и другое и заменить их данными, вы получите реальное преимущество.
Майкл Льюис, из книги «Moneyball. Как математика изменила самую популярную спортивную игру в мире»
О какой области знаний или отрасли науки мы здесь говорим? Обучение тому, как прогнозировать на основе данных, иногда называют машинным обучением – но это преимущественно научный термин, который используется в исследовательских лабораториях, на научных конференциях и в университетах (например, в конце 1990-х я несколько раз вел курс по машинному обучению в Колумбийском университете). Хотя именно в этих академических кругах куются новые знания, это не то место, где шины соприкасаются с дорогой. Там, где машинное обучение находит реальное практическое применение – в коммерческой, промышленной и государственной сферах, – его называют иначе:
Читать дальше