V. Speys - Book-5. Troyan horse, novella

Здесь есть возможность читать онлайн «V. Speys - Book-5. Troyan horse, novella» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Фантастика и фэнтези, Прочие приключения, russian_contemporary, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Book-5. Troyan horse, novella: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Book-5. Troyan horse, novella»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Readers of the novel «FAYETON», Book–5 «Troyan horse» will the new adventures of heroes. Calculations of the trajectory of movement «Portal of time» allowed scientists to continue research on the distant past of the Earth. With this mission, the astronaut is sent on a spacecraft to the «Portal of time» drifting in outer space… Enjoy your readings, your author V. Speys.

Book-5. Troyan horse, novella — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Book-5. Troyan horse, novella», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Illustrative examples of the action space on the body can be compared with the observed effect on the Earth more dense layers of air bubbles in the water, and as a result, the movement of bubbles from the denser layers of water to less dense, ie to the surface, similar lifting atmospheric probes, balloons, etc.

From the above it follows that the gravitational force – a force pushing space acting on the body in the direction of less dense state.

Illustrative examples of the action space on the matter observed in space: “Under the influence of gravitational fields is a kind of” bending “of space, which is manifested in the effects of bending of light rays in the gravitational fields. If the mass density of the system and reach a sufficiently large, then the metric space it varies so much that the light rays are beginning to move in the immediate vicinity along closed lines.”[2], p.61.

From the above conclusions follow:

1. The curvature of space is not a consequence of the action of gravitational fields, and there is a consequence of the absorption of space matter.

2. Curved space is nothing but the space is less dense than the surrounding, more compact space.

3. If the mass and density of the body reaches a large enough size, the space created around such a low density that light rays are beginning to move in the immediate vicinity, “gliding” on solid state space on closed lines.

Proof of a valid public

Suppose that space as matter has a density, and the assertion that the numerical amount of space equal to size of the amount of matter in it is located:

Vred = m mat (1)

where: Vred – Volume

m mat – the mass of matter located in this volume

From the accepted assumptions:

LimPpr Pmat = const =

LimPpr – density of space

Pmat – the density of matter

Assume that the gravitational force is the force pushing space, then, according to the law of Archimedes, [4], str.314, for a system consisting of two particles mass “m1” and mass “m2”, spaced at a distance “r”

equality:

Fvyt = Ftyag (2)

where: Fvyt – force pushing space acting on material points “m1” and “m2”

Ftyag- gravitational force acting on the material points “m1” and “m2”

Using the law of universal gravitation [3], page 29, we get:

Fvyt = Ftyag = Kg • m1 • m2 / r ² (3)

where: Kg- gravitational constant

m1- mass material point “m1”

m2- mass of the material point of “m2”

From the equation: P = Ftyag- Fts [4], p.48.

where: P – the force of gravity

Ftyag – the force of gravity

Fts – the centripetal force associated with the rotation of the Earth, in this case, Fts = “0”

Using the equation: P = Ftyag, formula (3) is transformed into:

P = Kg • m1 • m2 / r ² (4)

Transforming the formula (4), the expression P = m • g [4], p.50

Where: m – the total weight of the points “m1” and “m2” is: m = m1 + m2

g – gravitational tension

(M1 + m2) • g = Kg • m1 • m2 / r ² (5)

Replacing the expression for the mass of points through the volume and density we get:

(V1 + V2) • Pmat • g = Kg • m1 • m2 / r ²

(V1 + V2) • Pmat • g = Kg • V1 • V2 • P ² mat / r ²

Pmat = g • r ² • (V1 • V2) / Kg • V1 • V2 (6)

where: Pmat – the density of matter

V1 – volume of the material point “m1”

V2 – the amount of material point “m2”

g- gravitational tension

Kg- gravitational constant

Of the assumptions:

LimPpr = g • r ² • (Vpr1 Vpr2 +) / KG • • Vpr1 Vpr2 (7)

where: Vpr1 – the amount of space the material point “m1”

Vpr2 – the amount of space the material point “m2”

From the above formula (7) implies that an increase in the distance between two material points in the system consisting of the material points, the density of the space in these locations is increasing.

As a consequence of the above, it follows the law of the unity of existence of matter and space, or the law of conservation of matter and space.

The quantity of matter occupies a space equal to,

The numerical value of the amount of this SPACE

Mmat = Vred (1)

To prove the law consider the phenomenon of reducing the density of the space at the time the matter in it. In this case, the decrease in the density of space “RPR” filled the space occupied by the density of matter inversely:

R ¹ = 1/Rpr

where: P ¹ – the density of the space occupied by matter

RPR- density space

Of the assumptions (2) and (4) we get:

Fvyt = P ¹ • (+ Vpr1 Vpr2) • g = Kg • m1 • m2 / r ²

(Vpr1 + Vpr2) • g / LimPpr = Kg • m1 • m2 / r ²

• Vpr1 Vpr2 = m1 • m2

The product of the numerical amount of space occupied by matter, equal to the number of the numerical product of the mass of matter in space, or:

Mmat = m1 • m2;

Vred = Vpr1 • Vpr2

From the above discussion compliance with conditions (1)

Mmat = Vred (1)

On the basis of the law of conservation of space and matter, confirmed the validity of the assumption (2): Fvyt = Ftyag

From which it follows that the space affects, in a system consisting of any two material points on these points, with the force pushing applied to these points, and equal in magnitude to the force of gravity. The direction of this force, according to Newton’s third law can be proved similarly to the proof given the well- known [4], page 47.

On the basis of the law of conservation of space and matter, confirmed the validity of the received condition that space as matter has a density.

CONCLUSIONS

1. Strength, formerly known as the force of gravity [3]. Pp. 29 is a force which pushes the two material area point “m1” and “m2”, and is equal to:

Fvyt = (+ Vpr1 Vpr2) • g / Lim • Ppr

where: Fvyt- force pushing space

Vpr1- the amount of space occupied by the material point “m1”, equal

the volume of the material point “m1”.

Vpr2- the amount of space occupied by the material point “m2”, equal to the

the volume of the material point of “m2”

LimPpr – the ultimate density of the space, which is numerically equal to the density of matter points “m1” and “m2”. g- gravitational tension

2. With increasing distance between the two material points “m1” and “m2”,

the density of the space in these locations increases and tends to a limit equal to the numerical value of the matter density of points “m1” and “m2”.

LimPpr = g • r ² • (Vpr1 Vpr2 +) /Kg••Vpr1Vpr2

where: LimPpr – density of points in space “m1” and “m2”

g – gravitational tension

r – distance between “m1” and “m2”

Vpr1- the amount of space occupied by the material point “m1”, equal

volume of material point “m1”

Vpr2 – the amount of space occupied by the material point “m2”, equal

The volume of material points “m2”

Kg – the gravitational constant

3. The quantity of matter is the space occupied by the numerical amount of the Space:

Mmat = Vpr

FORMULA FOR OPENING

INSTALLATIONS previously unknown property space affect any two material points, the system consisting of the two material points with the ejection force applied to these points and directed towards the center of mass in the direction of the less dense area.

POSSIBLE APPLICATIONS OPEN

1. The discovery radically changes the understanding of the origin of gravity and answers the question about the nature of the gravitational force.

2. On the basis of the discovery can be disputed question of the origin of the various fields of electrical, magnetic, electromagnetic, etc., not fixing them as a consequence of inducing phenomena, namely to define the interaction of one or Ina forms of matter with space.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Book-5. Troyan horse, novella»

Представляем Вашему вниманию похожие книги на «Book-5. Troyan horse, novella» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Book-5. Troyan horse, novella»

Обсуждение, отзывы о книге «Book-5. Troyan horse, novella» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x