Дело в том, что не все столкновения между молекулами приводят к химическому взаимодействию. Хорошо, если из миллиона молекул только сто или двести способны к взаимодействию. А способны те, которые обладают некоторым избытком энергии. Чтобы стать "эффективной", молекула должна сначала запастись энергией.
Как же увеличить долю "эффективных" молекул? Ответ прост: увеличь численное значение множителя е — E / kT . Например, повышением температуры. Кроме того, "ленивые" молекулы можно "подстегнуть" гамма-лучами, светом, рентгеном, электрическими разрядами. Однако эти способы представлялись бесперспективными для возбуждения реакций при низких и сверхнизких температурах, когда доля эффективных молекул ничтожно мала и почти все реагенты — твердые.
И все же в последние годы положение изменилось, интерес к "ледяным реакциям" возрос необычайно. Это связано с успехами химии так называемых стереорегулярных полимеров. Обычные полимеры состоят из цепей молекул, расположенных как попало. Структура таких полимеров при большом увеличении напоминает бурелом. Но может быть и иная картина: молекулы как бы сложены в штабели. При этом полимер приобретает удивительные свойства: по прочности не уступает стали, выдерживает "натиск" самых сильных кислот, не поддается большим температурам. Получить стереорегулярный полимер нелегко. В поисках наилучших условий синтеза экспериментаторы перебрали различные комбинации давлений, температур, катализаторов. И натолкнулись на поразительное явление: полимеры, синтезированные при низких температурах, приобретают очень ценное качество — стереоспецифичность. Это значит, что в цепи полимера регулярно повторяются не только одни и те же сочетания атомов, но даже их пространственная ориентация. Другими словами, молекулы не прост уложены в штабель, как бревна, но еще и каждое "бревно" по отношению к соседям занимает вполне определенное положение. В структуре такого полимера царит столь строгий порядок, что само собой напрашивается сравнение с инженерной конструкцией. Упорядоченность молекул в стереорегулярных полимерах лежит на пределе, за которым простирается уже область перехода неживой материи в живую. А это означает, что у нас появляется возможность вплотную подойти к синтезу, например, искусственных белков.
Стереорегулярными полимерами занята сейчас целая армия химиков. И вот уже результат: направленный синтез стереорегулярных полимеров позволил решить важнейшую химическую проблему века — получить поли-цис-изопреновый каучук, равный по свойствам или превосходящий натуральный продукт. Не лишне вспомнить, что попытки синтеза такого каучука предпринимались чуть ли не с середины XIX века.
Игла для сшивки полимеров
Может быть, вы слышали такой термин: радиолиз, радиационная полимеризация? Он появился несколько лет назад. Как явствует из самого названия, при этом виде полимеризации "подогрев" частиц (их активизацию) производят электромагнитными квантами, ионизирующими излучениями. Что же происходит, когда вещество подвергают действию радиации? Гамма-кванты создают в веществе активный химический центр. И подобно игле, с огромной скоростью "прошивают" цепочку молекул. Полимерная молекула образуется "одним махом", без всяких побочных процессов.
Безотказная работа "иглы" требует точной ориентировки исходных молекул мономеров. Ведь при "сшивке" одновременно изменяется большое число химических связей. Например, расстояние между атомами углерода с двойной связью (С — С) увеличивается на две десятых ангстрема — в атомном мире довольно значительная величина. В полимере же это расстояние, наоборот, уменьшается на пол-ангстрема. Иными словами, а томно-молекулярная структура вещества как бы пульсирует, колышется. Поэтому "игле" нелегко попасть в нужное место цепи молекул. Они должны как-то помогать ей, чуть-чуть перемещаясь и поворачиваясь, "подставляя бока", так сказать.
Вот пример, иллюстрирующий трудность, с которой тут приходится сталкиваться. Представьте, что вы стрелок и вам необходимо одной пулей "прошить" длинный ряд мишеней — да так, чтобы пуля прошла через все "яблочки". Но вот беда: мишени не стоят строго "в затылок" друг другу, а натыканы в землю как попало. Вы растеряны, запрашиваете штаб — как быть? Приходит ответ: "Сейчас начнется землетрясение. Колебания почвы в какой-то момент выровняют мишени "в затылок". Значит, и "яблочки" на долю секунды окажутся на одной прямой. Уловите этот счастливый миг — и стреляйте".
Читать дальше